分析 根據(jù)函數(shù)奇偶性的定義進行判斷即可.
解答 解:(1)f(x)=$\frac{(1+{2}^{x})^{2}}{{2}^{x}}$=$\frac{1+2•{2}^{x}+{2}^{2x}}{{2}^{x}}$=$\frac{1}{{2}^{x}}$+2+2x,
則f(-x)=$\frac{1}{{2}^{x}}$+2+2x=f(x),則函數(shù)f(x)為偶函數(shù);
(2)∵f(x)=lg(x+$\sqrt{{x}^{2}+1}$);
∴f(-x)+f(x)=lg(x+$\sqrt{{x}^{2}+1}$)+lg(-x+$\sqrt{{x}^{2}+1}$)=lg(x+$\sqrt{{x}^{2}+1}$)(-x+$\sqrt{{x}^{2}+1}$)=lg(x2+1-x2)=lg1=0,
即f(-x)=-f(x),則函數(shù)f(x)為奇函數(shù).
(3)函數(shù)的定義域為(-∞,0)∪(0,+∞),
則f(-x)=lgx2+lg$\frac{1}{{x}^{2}}$=f(x),則函數(shù)f(x)為偶函數(shù).
點評 本題主要考查函數(shù)奇偶性的判斷,根據(jù)函數(shù)奇偶性的定義是解決本題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 2 | B. | 3 | C. | $\frac{1}{5}$ | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com