分析 (Ⅰ)求出函數(shù)的導(dǎo)數(shù),求得切線的斜率,由直線垂直的條件:斜率之積為-1,即可得到a=2,進(jìn)而得到f(x)的解析式;
(Ⅱ)求出函數(shù)的導(dǎo)數(shù),令導(dǎo)數(shù)大于0,可得增區(qū)間,令導(dǎo)數(shù)小于0,可得減區(qū)間,進(jìn)而得到極值和函數(shù)的圖象.
解答
解:(Ⅰ)對(duì)f(x)求導(dǎo)f′(x)=-3x2-4x+2a,
由題意f′(1)=-3-4+2a=-3,∴a=2,
∴f(x)=-x3-2x2+4x+8.
(Ⅱ)f′(x)=-3x2-4x+4=-(3x-2)(x+2),
由f′(x)≥0得$-2≤x≤\frac{2}{3}$,由f′(x)≤0得$x≥\frac{2}{3}$或x≤-2,
∴單調(diào)增區(qū)間為$[{-2,\frac{2}{3}}]$,單減區(qū)間為(-∞,-2),$(\frac{2}{3},+∞)$,
f(x)極小值=f(-2)=0f(x)極大值=$f(\frac{2}{3})=9\frac{13}{27}$,
大致圖象如右圖.
點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的運(yùn)用:求切線的斜率和單調(diào)區(qū)間、極值,主要考查導(dǎo)數(shù)的幾何意義,函數(shù)的單調(diào)性的判斷,屬于中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | (x-1)2+y2=5 | B. | (x-1)2+y2=$\frac{9}{2}$ | C. | (x-$\frac{1}{2}$)2+(y-$\frac{1}{2}$)2=5 | D. | (x-$\frac{1}{2}$)2+(y-$\frac{1}{2}$)2=$\frac{9}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | f(a)>f(b) | B. | f(a)=f(b) | C. | f(a)<f(b) | D. | f(a)f(b)>1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{7}{9}$ | B. | -$\frac{7}{9}$ | C. | $\frac{8}{9}$ | D. | -$\frac{8}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $C_9^5$ | B. | $C_9^6$ | C. | $C_8^7$ | D. | $C_9^7$ |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com