分析 (Ⅰ)由正弦定理化簡已知等式可得2sinBcosA=$\sqrt{3}$sinB,由sinB>0,從而可求cosA=$\frac{\sqrt{3}}{2}$,結(jié)合A的范圍即可得解.
(Ⅱ)由已知及三角形面積公式可求c,由余弦定理即可解得a的值.
解答 解:(Ⅰ)由正弦定理可得:2sinBcosA=$\sqrt{3}$(sinCcosA+sinAcosC),
得:2sinBcosA=$\sqrt{3}$sin(A+C),
即:2sinBcosA=$\sqrt{3}$sinB,
因為0<B<π,所以sinB>0,
從而cosA=$\frac{\sqrt{3}}{2}$,
又0<A<π,
所以A=$\frac{π}{6}$…6分
(Ⅱ)由b=4,S=6=$\frac{1}{2}$bcsinA=$\frac{1}{2}×4×c×\frac{1}{2}$,解得:c=6.
由余弦定理可得:a2=b2+c2-2bccosA=42+62-2×$4×6×\frac{\sqrt{3}}{2}$=52-24$\sqrt{3}$,
可解得:a=2$\sqrt{13-6\sqrt{3}}$.
點評 本題主要考查了正弦定理,余弦定理,三角形面積公式,三角函數(shù)恒等變換的應(yīng)用,屬于基本知識的考查.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | -$\frac{3}{5}$ | B. | $\frac{3}{5}$ | C. | -$\frac{4}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{1}{3}$ | D. | -$\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 92 | B. | $16\sqrt{2}+80$ | C. | 80 | D. | $16\sqrt{2}+92$ |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com