欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

19.要分配甲、乙、丙、丁、戊5名同學(xué)去參加三項(xiàng)不同的教學(xué)活動,其中活動一和活動二各要2人,活動三要1人,每人只能參加一項(xiàng)活動,且甲,乙兩人不能參加同一活動,則一共有24_種不同的分配方法.

分析 間接法:先求出活動一和活動二各要2人,活動共有三要1人的方法種數(shù),去掉甲,乙兩人參加同一活的方法種數(shù)即可.

解答 解:由題意把甲、乙、丙、丁、戊5人分配去參加三項(xiàng)不同的活動,
其中活動一和活動二各要2人,活動三要1人共有${C}_{5}^{2}•{C}_{3}^{2}$=30種方法,
其中甲,乙兩人參加同一活動${C}_{3}^{2}$+${C}_{3}^{2}$=6種方法,
故符合題意得方法共30-6=24種,
故答案為:24.

點(diǎn)評 本題考查排列組合的應(yīng)用,間接法是解決問題的關(guān)鍵,屬中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在△ABC中,設(shè)$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow$,O為△ABC的重心,則$\overrightarrow{OA}$可用$\overrightarrow{a}$,$\overrightarrow$表示為$-\frac{1}{3}$($\overrightarrow{a}$+$\overrightarrow$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知i為虛數(shù)單位,若$\frac{1+i}{z}=1-2i$,則復(fù)數(shù)z所對應(yīng)的點(diǎn)所在的象限是( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.一個(gè)平行四邊形的三個(gè)頂點(diǎn)的坐標(biāo)為(-1,2),(3,4),(4,-2),點(diǎn)(x,y)在這個(gè)平行四邊形的內(nèi)部或邊上,則z=2x-5y的最大值與最小值的和等于(  )
A.8B.6C.-12D.-24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列說法中正確的是( 。
A.若命題p:?x∈R有x2>0,則¬p:?x∈R有x2≤0
B.若p是q的充分不必要條件,則¬p是¬q的必要不充分條件
C.若命題p:$\frac{1}{x-1}$>0,則¬p:$\frac{1}{x-1}$≤0
D.方程ax2+x+a=0有唯一解的充要條件是a=±$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在四棱錐P-ABCD中,PA⊥平面ABCD,AD∥BC,BC=2AD=4,AB=CD=$\sqrt{10}$,∠DBC=45°
(1)證明:BD⊥平面PAC;
(2)若二面角A-PC-D的大小為60°,求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知向量$\overrightarrow{m}$=(2sinωx,cos2ωx-sin2ωx),$\overrightarrow{n}$=($\sqrt{3}$cosωx,1)其中ω>0,x∈R,若函數(shù)f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$的最小正周期為π.
(1)求ω的值及f(x)的對稱軸方程;
(2)在△ABC中,角A,B,C的對邊為a,b,c,若f(B)=-2,BC=$\sqrt{3}$,2bcosA=$\sqrt{3}$(ccosA+acosC),求$\overrightarrow{BA}$•$\overrightarrow{BC}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若不等式kx2-2x+1-k<0對滿足-2≤k≤2的所有k都成立,則x的取值范圍是($\frac{-1+\sqrt{7}}{2}$,$\frac{1+\sqrt{3}}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,直三棱柱ABC-A1B1C1的底面是邊長為A的正三角形,點(diǎn)M在邊BC上,△AMC1是以M為直角頂點(diǎn)的等腰直角三角形.
(1)求證:直線A1B∥平面AMC1
(2)求三棱錐C1-AB1M的高.

查看答案和解析>>

同步練習(xí)冊答案