分析 解法一:(1)由已知得$\left\{\begin{array}{l}{b=\sqrt{2}}\\{\frac{c}{a}=\frac{\sqrt{2}}{2}}\\{{a}^{2}=^{2}+{c}^{2}}\end{array}\right.$,解得即可得出橢圓E的方程.
(2)設(shè)點(diǎn)A(x1,y1),B(x2,y2),AB中點(diǎn)為H(x0,y0).直線方程與橢圓方程聯(lián)立化為(m2+2)y2-2my-3=0,利用根與系數(shù)的關(guān)系中點(diǎn)坐標(biāo)公式可得:y0=$\frac{m}{{m}^{2}+2}$.|GH|2=$({x}_{0}+\frac{9}{4})^{2}+{y}_{0}^{2}$.$\frac{|AB{|}^{2}}{4}$=$\frac{({m}^{2}+1)[({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}]}{4}$,作差|GH|2-$\frac{|AB{|}^{2}}{4}$即可判斷出.
解法二:(1)同解法一.
(2)設(shè)點(diǎn)A(x1,y1),B(x2,y2),則$\overrightarrow{GA}$=$({x}_{1}+\frac{9}{4},{y}_{1})$,$\overrightarrow{GB}$=$({x}_{2}+\frac{9}{4},{y}_{2})$.直線方程與橢圓方程聯(lián)立化為(m2+2)y2-2my-3=0,計(jì)算$\overrightarrow{GA}•\overrightarrow{GB}$=$({x}_{1}+\frac{9}{4})({x}_{2}+\frac{9}{4})+{y}_{1}{y}_{2}$即可得出∠AGB,進(jìn)而判斷出位置關(guān)系.
解答 解法一:(1)由已知得$\left\{\begin{array}{l}{b=\sqrt{2}}\\{\frac{c}{a}=\frac{\sqrt{2}}{2}}\\{{a}^{2}=^{2}+{c}^{2}}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=2}\\{b=c=\sqrt{2}}\end{array}\right.$,
∴橢圓E的方程為$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1$.
(2)設(shè)點(diǎn)A(x1y1),B(x2,y2),AB中點(diǎn)為H(x0,y0).
由$\left\{\begin{array}{l}{x=my-1}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1}\end{array}\right.$,化為(m2+2)y2-2my-3=0,
∴y1+y2=$\frac{2m}{{m}^{2}+2}$,y1y2=$\frac{-3}{{m}^{2}+2}$,∴y0=$\frac{m}{{m}^{2}+2}$.
G$(-\frac{9}{4},0)$,
∴|GH|2=$({x}_{0}+\frac{9}{4})^{2}+{y}_{0}^{2}$=$(m{y}_{0}+\frac{5}{4})^{2}$+${y}_{0}^{2}$=$({m}^{2}+1){y}_{0}^{2}$+$\frac{5}{2}m{y}_{0}$+$\frac{25}{16}$.
$\frac{|AB{|}^{2}}{4}$=$\frac{({x}_{1}-{x}_{2})^{2}+({y}_{1}-{y}_{2})^{2}}{4}$=$\frac{({m}^{2}+1)[({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}]}{4}$=$({m}^{2}+1)({y}_{0}^{2}-{y}_{1}{y}_{2})$,
故|GH|2-$\frac{|AB{|}^{2}}{4}$=$\frac{5}{2}m{y}_{0}+({m}^{2}+1){y}_{1}{y}_{2}$+$\frac{25}{16}$=$\frac{5{m}^{2}}{2({m}^{2}+2)}$-$\frac{3({m}^{2}+1)}{{m}^{2}+2}$+$\frac{25}{16}$=$\frac{17{m}^{2}+2}{16({m}^{2}+2)}$>0.
∴$|GH|>\frac{|AB|}{2}$,故G在以AB為直徑的圓外.
解法二:(1)同解法一.
(2)設(shè)點(diǎn)A(x1y1),B(x2,y2),則$\overrightarrow{GA}$=$({x}_{1}+\frac{9}{4},{y}_{1})$,$\overrightarrow{GB}$=$({x}_{2}+\frac{9}{4},{y}_{2})$.
由$\left\{\begin{array}{l}{x=my-1}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1}\end{array}\right.$,化為(m2+2)y2-2my-3=0,
∴y1+y2=$\frac{2m}{{m}^{2}+2}$,y1y2=$\frac{-3}{{m}^{2}+2}$,
從而$\overrightarrow{GA}•\overrightarrow{GB}$=$({x}_{1}+\frac{9}{4})({x}_{2}+\frac{9}{4})+{y}_{1}{y}_{2}$
=$(m{y}_{1}+\frac{5}{4})(m{y}_{2}+\frac{5}{4})$+y1y2
=$({m}^{2}+1){y}_{1}{y}_{2}+\frac{5}{4}m({y}_{1}+{y}_{2})$+$\frac{25}{16}$
=$\frac{5{m}^{2}}{2({m}^{2}+2)}$-$\frac{3({m}^{2}+1)}{{m}^{2}+2}$+$\frac{25}{16}$=$\frac{17{m}^{2}+2}{16({m}^{2}+2)}$>0.
∴$\overrightarrow{GA}•\overrightarrow{GB}$>0,又$\overrightarrow{GA}$,$\overrightarrow{GB}$不共線,
∴∠AGB為銳角.
故點(diǎn)G$(-\frac{9}{4},0)$在以AB為直徑的圓外.
點(diǎn)評(píng) 本小題主要考查橢圓、圓、直線與橢圓的位置關(guān)系、點(diǎn)與圓的位置關(guān)系、向量數(shù)量積運(yùn)算性質(zhì)等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,屬于難題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | -2 | B. | -1 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 2 | B. | 1 | C. | 0 | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | ($\frac{5}{4}$,$\frac{7}{4}$] | B. | ($\frac{3}{4}$,$\frac{4}{5}$] | C. | (1,$\frac{5}{4}$] | D. | ($\frac{3}{4}$,$\frac{5}{4}$] |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com