欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

6.已知△ABC的三邊長為a=2$\sqrt{3}$,b=2$\sqrt{2}$,c=$\sqrt{6}$$+\sqrt{2}$,求△ABC的各角度數(shù).

分析 由已知及余弦定理可得:cosA=$\frac{1}{2}$,cosB=$\frac{\sqrt{2}}{2}$,結(jié)合范圍A,B∈(0,π),可求A=$\frac{π}{3}$,B=$\frac{π}{4}$,利用三角形內(nèi)角和定理即可解得C的值.

解答 解:∵△ABC的三邊長為a=2$\sqrt{3}$,b=2$\sqrt{2}$,c=$\sqrt{6}$$+\sqrt{2}$,
∴由余弦定理可得:cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{8+8+4\sqrt{3}-12}{2×2\sqrt{2}×(\sqrt{6}+\sqrt{2})}$=$\frac{1}{2}$,cosB=$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$=$\frac{12+8+4\sqrt{3}-8}{2×2\sqrt{3}×(\sqrt{6}+\sqrt{2})}$=$\frac{\sqrt{2}}{2}$,
∵A,B∈(0,π),
∴可得:A=$\frac{π}{3}$,B=$\frac{π}{4}$,解得:C=π-A-B=$\frac{5π}{12}$.

點(diǎn)評(píng) 本題主要考查了余弦定理,三角形內(nèi)角和定理在解三角形中的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.有兩個(gè)袋子,其中甲袋中裝有編號(hào)分別為1、2、3、4的4個(gè)完全相同的球,乙袋中裝有編號(hào)分別為2、4、6的3個(gè)完全相同的球.
(Ⅰ)從甲、乙袋子中各取一個(gè)球,求兩球編號(hào)之和小于8的概率;
(Ⅱ)從甲袋中取2個(gè)球,從乙袋中取一個(gè)球,求所取出的3個(gè)球中含有編號(hào)為2的球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.函數(shù)y=sin2x的圖象的一個(gè)對(duì)稱中心為( 。
A.(0,0)B.($\frac{π}{4}$,0)C.($\frac{π}{4}$,$\frac{1}{2}$)D.($\frac{π}{2}$,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知tanα=$\frac{1}{3}$,cosβ=$\frac{\sqrt{5}}{5}$,且0<α<$\frac{π}{2}$,$\frac{3π}{2}$<β<2π,則α+β=$\frac{7π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.甲、乙,丙3個(gè)盒中分別裝有大小相等,形狀相同的卡片若干張,甲盒中裝有2張卡片,分別寫有字母A和B;乙盒中裝有3張卡片,分別寫有字母C,D和E;丙盒中裝有2張卡片,分別寫有字母H和I,現(xiàn)要從3個(gè)盒中各隨機(jī)取出1張卡片.求:(1)取出的3張卡片中恰好有1張、2張、3張寫有元音字母的概率各是多少;
(2)取出的3張卡片上全是輔音字母的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知過點(diǎn)P(0,-1)的直線與曲線y=1nx相切,這條直線也與曲線y=ax2+5x+1(α≠0)相切,則a的值為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在△ABC中,角A,B,C所對(duì)邊的長分別為a,b,c,M為AB邊上一點(diǎn),$\overrightarrow{CM}$=λ$\overrightarrow{MP}$(λ∈R)且$\overrightarrow{MP}$=$\frac{\overrightarrow{CA}}{|\overrightarrow{CA}|cosA}$+$\frac{\overrightarrow{CB}}{|\overrightarrow{CB}|cosB}$.又已知|$\overrightarrow{CM}$|=$\frac{c}{2}$,a2+b2=2$\sqrt{2}$ab,則角C=$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在柱坐標(biāo)系中畫出下列各點(diǎn),并把它們化成空間直角坐標(biāo)系;
A(4,$\frac{3π}{4}$,2);
B(6,$\frac{π}{3}$,-5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知函數(shù)$f(x)=\left\{\begin{array}{l}cos\frac{π}{2}x,0≤x≤4\\-x+5,x>4\end{array}\right.$,若實(shí)數(shù)a、b、c互不相等,且滿足f(a)=f(b)=f(c),則a+b+c的取值范圍是(8,10).

查看答案和解析>>

同步練習(xí)冊(cè)答案