分析 (1)由正弦定理及兩角和的正弦函數(shù)公式化簡(jiǎn)已知等式可得sin(B+C)=2sinAcosB=sinA,可求cosB=$\frac{1}{2}$,結(jié)合B范圍即可得解;
(2)由余弦定理可得:3=a2+c2-ac,由不等式ac≤$\frac{{a}^{2}+{c}^{2}}{2}$,(當(dāng)且僅當(dāng)a=c時(shí)取等號(hào))即可解得a2+c2的最大值.
解答 (本題滿分為10分)
解:(1)由bcosC+ccosB=2acosB及正弦定理可得sinBcosC+sinCcosB=2sinAcosB,
即有:sin(B+C)=2sinAcosB=sinA,
由于sinA≠0,兩邊同時(shí)除以sinA,可得2cosB=1,
所以,cosB=$\frac{1}{2}$,
可得:B=$\frac{π}{3}$…5分
(2)由余弦定理可得:3=a2+c2-ac,
∵ac≤$\frac{{a}^{2}+{c}^{2}}{2}$,(當(dāng)且僅當(dāng)a=c時(shí)取等號(hào))
∴3=a2+c2-ac$≥{a}^{2}+{c}^{2}-\frac{{a}^{2}+{c}^{2}}{2}=\frac{{a}^{2}+{c}^{2}}{2}$,
∴a2+c2≤6,
∴a2+c2的最大值為6…10分
點(diǎn)評(píng) 本題主要考查了正弦定理,余弦定理,兩角和的正弦函數(shù)公式,基本不等式的綜合應(yīng)用,屬于基本知識(shí)的考查.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{4}{3}$ | B. | $\frac{3}{4}$ | C. | 2 | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | {6,12} | B. | {3,9} | C. | {0,3,9} | D. | {0,6,12} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com