欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

12.已知函數(shù)f(x)=|x-1|-1,且關(guān)于x方程f2(x)+af(x)-2=0有且只有三個(gè)實(shí)數(shù)根,則實(shí)數(shù)a的值為(  )
A.1B.-1C.0D.2

分析 作出f(x)=|x-1|-1的圖象,令t=f(x),對(duì)于方程t2+at-2=0,有一個(gè)根為-1,即可得出結(jié)論.

解答 解:作出f(x)=|x-1|-1的圖象,令t=f(x),對(duì)于方程t2+at-2=0的兩個(gè)根t1=-1,t2∈(-1,+∞),
代入可得a=-1,檢驗(yàn)得三個(gè)實(shí)數(shù)根為1,-2,4,滿足題意,
故選:B.

點(diǎn)評(píng) 本題考查了方程的根與函數(shù)的圖象的關(guān)系,同時(shí)考查了學(xué)生的作圖能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知數(shù)列{an}的首項(xiàng)a1=$\frac{1}{2}$,前n項(xiàng)和為Sn,且Sn=p-an
(Ⅰ)求P及{an}的通項(xiàng)公式;
(Ⅱ)對(duì)n∈N*,在an與an+1之間插入3n的數(shù),使得這3n+2項(xiàng)成等差數(shù)列,記插入的3n個(gè)數(shù)之和為bn,令cn=$\frac{4}{3}$nbn,求{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知函數(shù)f(x)=$\left\{\begin{array}{l}{\sqrt{x},0<x≤4}\\{|x-6|,x>4}\end{array}\right.$,若方程f(x)=kx+1有三個(gè)不同的實(shí)數(shù)根,則實(shí)數(shù)k的取值范圍是( 。
A.(-$\frac{1}{6}$,$\frac{1}{4}$)B.(-∞,-$\frac{1}{6}$)∪($\frac{1}{4}$,+∞)C.[-$\frac{1}{6}$,$\frac{1}{4}$)D.(-$\frac{1}{6}$,$\frac{1}{4}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)是定義在(0,+∞)上的可導(dǎo)函數(shù),且f(x)>0,f(x)+f′(x)<0
(Ⅰ)討論函數(shù)F(x)=exf(x)的單調(diào)性并判斷ee-2f(e)<f(2)是否成立?
(Ⅱ)設(shè)0<x<1,比較xf(x)與$\frac{1}{x}$f($\frac{1}{x}$)的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=|x+a|+|x+$\frac{1}{a}$|(a>0)
(I)當(dāng)a=2時(shí),求不等式 f(x)>3的解集;(Ⅱ)證明:f(m)+$f(-\frac{1}{m})≥4$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,且asinA+bsinB-csinC=bsinA.
(Ⅰ)求∠C的度數(shù);
(Ⅱ)若c=2,求AB邊上的高CD的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知圓C:x2+y2-6y+8=0,若直線y=kx與圓C相切,且切點(diǎn)在第二象限,則實(shí)數(shù)k=-2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.在(1,+∞)上的函數(shù)f(x)滿足:①f(2x)=cf(x)(c為正常數(shù));②當(dāng)2≤x≤4時(shí),f(x)=1-(x-3)2.若f(x)圖象上所有極大值對(duì)應(yīng)的點(diǎn)均落在同一條直線上.則c=( 。
A.1或$\frac{1}{2}$B.$\frac{1}{2}或2$C.1或3D.1或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=lnx-ax+$\frac{a}{x}$,其中a為常數(shù).
(Ⅰ)若f(x)的圖象在x=1處的切線經(jīng)過(guò)點(diǎn)(3,4),求a的值;
(Ⅱ)若0<a<1,求證:$f(\;\frac{a^2}{2}\;)>0$;
(Ⅲ)當(dāng)函數(shù)f(x)存在三個(gè)不同的零點(diǎn)時(shí),求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案