分析 (1)化簡V=4(1-x)(k-x)x=4[x3-(1+k)x2+kx],x∈(0,k),從而求導(dǎo)${V^/}=4[3{x^2}-2(1+k)x+k]=12{x^2}-13x+\frac{5}{2}=0$,$x∈(0,\frac{5}{8})$;從而確定函數(shù)的最大值即可;
(2)記長方體的盒子的對角線長度為l米,從而可得$l=\sqrt{{{(2-2x)}^2}+{{(2k-2x)}^2}+{x^2}}=\sqrt{9{x^2}-8(1+k)x+4(1+{k^2})}x∈(0,k)$,從而可得$\frac{4(1+k)}{9}∈(0,k)$,
從而解得.
解答 解:(1)V=4(1-x)(k-x)x=4[x3-(1+k)x2+kx],x∈(0,k),
${V^/}=4[3{x^2}-2(1+k)x+k]=12{x^2}-13x+\frac{5}{2}=0$,$x∈(0,\frac{5}{8})$;
解得$x=\frac{5}{6}$(舍去),$x=\frac{1}{4}$;
故函數(shù)V在(0,$\frac{1}{4}$)上單調(diào)遞增,在($\frac{1}{4}$,$\frac{5}{8}$)上單調(diào)遞減;
故這個長方體盒子的容積的最大時的x的值為$\frac{1}{4}$.
(2)記長方體的盒子的對角線長度為l米,
則$l=\sqrt{{{(2-2x)}^2}+{{(2k-2x)}^2}+{x^2}}=\sqrt{9{x^2}-8(1+k)x+4(1+{k^2})}x∈(0,k)$,
∵l有最小值,
∴$\frac{4(1+k)}{9}∈(0,k)$,
解得$\frac{4}{5}<k<1$.
故k的范圍為($\frac{4}{5}$,1).
點(diǎn)評 本題考查了函數(shù)在實(shí)際問題中的應(yīng)用及導(dǎo)數(shù)的綜合應(yīng)用,屬于中檔題.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 5 | B. | -5 | C. | $\frac{1}{5}$ | D. | $-\frac{1}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com