欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

15.f (x)=-sin(x+$\frac{π}{6}$) sin(x-$\frac{π}{3}$)的最小正周期和一條對稱軸方程為( 。
A.2π;x=kπ+$\frac{π}{12}$,k∈ZB.2π;x=kπ+$\frac{π}{6}$,k∈Z
C.π;x=$\frac{1}{2}$kπ+$\frac{π}{12}$,k∈ZD.π;x=$\frac{1}{2}$kπ+$\frac{π}{6}$,k∈Z

分析 利用誘導公式、二倍角的正弦公式化簡函數(shù)的解析式,再利用正弦函數(shù)的周期性、以及圖象的對稱,得出結(jié)論.

解答 解:f (x)=-sin(x+$\frac{π}{6}$) sin(x-$\frac{π}{3}$)=-cos($\frac{π}{3}$-x)sin(x-$\frac{π}{3}$)=-sin(x-$\frac{π}{3}$)cos(x-$\frac{π}{3}$)=-$\frac{1}{2}$sin(2x-$\frac{2π}{3}$),
它的最小正周期為$\frac{2π}{2}$=π.
令2x-$\frac{2π}{3}$=kπ+$\frac{π}{2}$,求得x=$\frac{kπ}{2}$+$\frac{7π}{12}$,k∈Z,
即x=$\frac{1}{2}$kπ+$\frac{π}{12}$,k∈Z,
故選:C.

點評 本題主要考查誘導公式、二倍角的正弦公式的應用,正弦函數(shù)的周期性、以及圖象的對稱性,屬于基礎題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

5.如圖,四棱錐中,AB∥CD,BC⊥CD側(cè)面SAB為等邊三角形,AB=BC=2,CD=SD=1.
(1)證明:SD⊥平面SAB;
(2)求二面角A-SB-C的平面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.下列命題正確的是( 。
A.命題“?x∈R,使得x2-1<0”的否定是:?x∈R,均有x2-1<0
B.命題“若x=3,則x2-2x-3=0”的否命題是:若x≠3,則x2-2x-3≠0
C.“$α=2kπ+\frac{π}{3}(k∈Z)$”是“$sin2α=\frac{{\sqrt{3}}}{2}$”的必要而不充分條件
D.命題“cosx=cosy,則x=y”的逆否命題是真命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知1<a<b,m=ab-1,n=ba-1,則m,n的大小關(guān)系為( 。
A.m<n
B.m=n
C.m>n
D.m,n的大小關(guān)系不確定,與a,b的取值有關(guān)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知向量$\overrightarrow{a}$、$\overrightarrow$的夾角為60°,|$\overrightarrow{a}$|=2,在區(qū)間(1,4)上任取一個數(shù)為|$\overrightarrow$|,則(2$\overrightarrow{a}$-3$\overrightarrow$)•$\overrightarrow{a}$<0的概率為$\frac{4}{9}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.設數(shù)列{an}滿足a1=2,${a_{n+1}}-{a_n}={2^n}$;數(shù)列{bn}的前n項和為Sn,且${S_n}=\frac{1}{2}(3{n^2}-n)$.
(Ⅰ)求數(shù)列{an}和{bn}的通項公式;
(Ⅱ)把數(shù)列{an}和{bn}的公共項從小到大排成新數(shù)列{cn},試寫出c1,c2,并證明{cn}為等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知$sin(\frac{π}{3}-\frac{α}{2})=-\frac{{\sqrt{3}}}{2}$,則$cos(\frac{π}{3}+α)$=( 。
A.$\frac{{\sqrt{3}}}{2}$B.$-\frac{{\sqrt{3}}}{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知函數(shù)f(x)=sin2x+acos2x的圖象關(guān)于直線$x=-\frac{π}{8}$對稱.
(1)求實數(shù)a的值;
(2)若對任意的x∈[0,$\frac{π}{4}$].使得m[f(x)+8]+2=0有解,求實數(shù)m的取值范囤:
(3)若x∈(0,$\frac{5π}{8}$)時,關(guān)于x的方程f2(x)-2nf(x)+1=0有四個不等式的實根.求實數(shù)n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.直線l過點A(2,3),且橫截距與縱截距相等,則直線l的方程為3x-2y=0或x+y-5=0.

查看答案和解析>>

同步練習冊答案