欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

18.已知函數(shù)f(x)=x+$\frac{a}{x}$-2lnx,a∈R.
(1)若f(x)在定義域上為單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍;
(2)若函數(shù)f(x)有兩個(gè)極值點(diǎn)x1,x2,且x1<x2,證明:f(x2)<x2-1.

分析 (1)求出函數(shù)的定義域?yàn)椋?,+∞),函數(shù)的導(dǎo)數(shù),根據(jù)函數(shù)單調(diào)性和導(dǎo)數(shù)之間的關(guān)系進(jìn)行求解即可.
(2)求出函數(shù)f(x)有兩個(gè)極值點(diǎn)x1,x2,等價(jià)于方程x2-2x+a=0在(0,+∞),得到a的取值范圍,構(gòu)造新函數(shù)g(t)=t-2lnt-1,1<t<2,利用新函數(shù)的單調(diào)性證明求解即可.

解答 (1)解:函數(shù)$f(x)=x-\frac{a}{x}-2lnx$的定義域?yàn)椋?,+∞),$f'(x)=1+\frac{a}{x^2}-\frac{2}{x}=\frac{{{x^2}-2x+a}}{x^2}$,…(1分)
令f′(x)=0,得x2-2x+a=0,其判別式△=4-4a,
若函數(shù)f(x)在(0,+∞)上為單調(diào)函數(shù),
則函數(shù)f(x)只能是單調(diào)遞增函數(shù),
即f′(x)≥0恒成立,即x2-2x+a≥0在(0,+∞)上恒成立,
即a≥-(x2-2x)在(0,+∞)上恒成立,
∵當(dāng)x>0時(shí),-(x2-2x)=-(x-1)2+1≤1,
∴a≥1.
(2)由(1)知若a≥1時(shí),f(x)在(0,+∞)上單調(diào)遞增;此時(shí)函數(shù)無(wú)極值,不滿足條件.
則a<1,
當(dāng)△>0,即a<1時(shí),方程x2-2x+a=0的兩根為${x_1}=1-\sqrt{1-a}$,${x_2}=1+\sqrt{1-a}>1$,
若a≤0,則x1≤0,則x∈(0,x2)時(shí),f′(x)<0,x∈(x2,+∞)時(shí),f′(x)>0,
此時(shí),f(x)在(0,x2)上單調(diào)遞減,在(x2,+∞)上單調(diào)遞增;
若a>0,則x1>0,則x∈(0,x1)時(shí),f′(x)>0,x∈(x1,x2)時(shí),f′(x)<0,x∈(x2,+∞)時(shí),f′(x)>0,
此時(shí),f(x)在(0,x1)上單調(diào)遞增,在(x1,x2)上單調(diào)遞減,在(x2,+∞)上單調(diào)遞增.
綜上所述,當(dāng)a≤0時(shí),函數(shù)f(x)在(0,x2)上單調(diào)遞減,在(x2,+∞)上單調(diào)遞增;
當(dāng)0<a<1時(shí),函數(shù)f(x)在(0,x1)上單調(diào)遞增,在(x1,x2)上單調(diào)遞減,在(x2,+∞)上單調(diào)遞增;
若函數(shù)f(x)有兩個(gè)極值點(diǎn)x1,x2,且x1<x2,則等價(jià)于方程x2-2x+a=0在(0,+∞)有
兩不等實(shí)根,故0<a<1.
則${x_2}=1+\sqrt{1-a}$,且1<x2<2,$a=-x_2^2+2{x_2}$.
$f({x_2})-{x_2}+1={x_2}-\frac{{-x_2^2+2{x_2}}}{x_2}-2ln{x_2}-{x_2}+1={x_2}-2ln{x_2}-1$,
令g(t)=t-2lnt-1,1<t<2,
則$g'(t)=1-\frac{2}{t}=\frac{t-2}{t}$,
由于1<t<2,則g′(t)<0,故g(t)在(1,2)上單調(diào)遞減.
故g(t)<g(1)=1-2ln1-1=0.
∴f(x2)-x2+1=g(x2)<0.
∴f(x2)<x2-1.

點(diǎn)評(píng) 本題考查函數(shù)的導(dǎo)數(shù)的應(yīng)用,函數(shù)的極值以及函數(shù)的單調(diào)性的應(yīng)用,考查分析問(wèn)題解決問(wèn)題的能力,轉(zhuǎn)化思想的應(yīng)用.綜合性較強(qiáng),難度較大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.設(shè)向量$\overrightarrow{AB}=({1,2cosθ}),\overrightarrow{BC}=({m,-4}),θ∈({-\frac{π}{2},\frac{π}{2}})$.若對(duì)任意$m∈[{-1,0}],\overrightarrow{AC}•\overrightarrow{BC}≤10$恒成立,則$sin({θ-\frac{π}{2}})$的取值范圍為$[{-1,-\frac{3}{4}}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.對(duì)稱軸為坐標(biāo)軸的橢圓與的焦點(diǎn)F1(-$\sqrt{3}$,0),F(xiàn)2( $\sqrt{3}$,0),P為橢圓上任意一點(diǎn),滿足|PF1|+|PF2|=4.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)不過(guò)原點(diǎn)O的直線l:y=kx+$\frac{1}{2}$與橢圓交于P,Q兩點(diǎn),滿足直線OP,PQ,OQ的斜率依次成等比數(shù)列,O到直線PQ的距離為$\frac{1}{\sqrt{5}}$,求S△OPQ的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率e=$\frac{\sqrt{3}}{2}$,F(xiàn)1,F(xiàn)2是橢圓C的兩個(gè)焦點(diǎn),P是C上任意一點(diǎn),且△PF1F2的周長(zhǎng)為8+4$\sqrt{3}$.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線l與橢圓相交于不同的兩點(diǎn)A、B,已知點(diǎn)A的坐標(biāo)為(-a,0),點(diǎn)Q(0,-3)在線段AB的垂直平分線上,求弦AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$(a>b>0)的一個(gè)頂點(diǎn)為A(0,-1),離心率e=$\frac{\sqrt{6}}{3}$.
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)設(shè)運(yùn)動(dòng)直線l:y=kx+$\frac{3}{2}$(k≠0)與橢圓E相交于M、N兩點(diǎn),線段MN的中點(diǎn)為P,若AP⊥MN,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,且過(guò)點(diǎn)($\sqrt{2}$,$\frac{\sqrt{2}}{2}$).
(Ⅰ)求橢圓方程;
(Ⅱ)設(shè)不過(guò)原點(diǎn)O的直線l:y=kx+m(k≠0),與該橢圓交于P、Q兩點(diǎn),直線OP、OQ的斜率一次為k1、k2,滿足4k=k1+k2
(i)當(dāng)k變化時(shí),m2是否為定值?若是,求出此定值,并證明你的結(jié)論;若不是,請(qǐng)說(shuō)明理由;
(ii)求△OPQ面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.若焦點(diǎn)在y軸上的橢圓$\frac{x^2}{2}+\frac{y^2}{m}=1$的離心率為$\frac{1}{2}$,則m=( 。
A.1B.$\frac{3}{2}$C.$\frac{8}{3}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.橢圓$\frac{{x}^{2}}{4}$+y2=1中,以點(diǎn)M(1,$\frac{1}{2}$)為中點(diǎn)的弦所在直線方程是x+2y-2=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.給出兩個(gè)樣本,甲:5,4,3,2,1;乙:4,0,2,1,-2,則樣本甲和樣本乙的數(shù)據(jù)離散程度是( 。
A.甲、乙的離散程度一樣B.甲的離散程度比乙的離散程度大
C.乙的離散程度比甲的離散程度大D.甲、乙的離散程度無(wú)法比較

查看答案和解析>>

同步練習(xí)冊(cè)答案