分析 (1)由已知得b=1,e=$\frac{c}{a}=\frac{\sqrt{6}}{3}$,由此能求出橢圓E的方程.
(2)由$\left\{\begin{array}{l}{\frac{{x}^{2}}{3}+{y}^{2}=1}\\{y=kx+\frac{3}{2}}\end{array}\right.$,得$(1+3{k}^{2}){x}^{2}+9kx+\frac{15}{4}$=0,由此利用根的判別式、韋達定理、中點坐標公式、直線垂直的性質,結合已知條件能求出k.
解答 解:(1)∵橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$(a>b>0)的一個頂點為A(0,-1),離心率e=$\frac{\sqrt{6}}{3}$,
∴b=1,e=$\frac{c}{a}=\frac{\sqrt{6}}{3}$,
∵a2=b2+c2,∴c2=2,a2=3,
∴橢圓E的橢圓方程為$\frac{{x}^{2}}{3}+{y}^{2}=1$.
(2)設M(x1,y1),N(x2,y2),則P($\frac{{x}_{1}+{x}_{2}}{2}$,$\frac{{y}_{1}+{y}_{2}}{2}$),
由$\left\{\begin{array}{l}{\frac{{x}^{2}}{3}+{y}^{2}=1}\\{y=kx+\frac{3}{2}}\end{array}\right.$,得$(1+3{k}^{2}){x}^{2}+9kx+\frac{15}{4}$=0,
則△=81k2-15(1+3k2)=36k2-15>0,即${k}^{2}>\frac{15}{2}$,①
${x}_{1}+{x}_{2}=-\frac{9k}{1+3{k}^{2}}$,②
∵AP⊥MN,∴kMN•kAP=-1,
即k=$\frac{\frac{{y}_{1}+{y}_{2}}{2}+1}{\frac{{x}_{1}+{x}_{2}}{2}}$=-1,∴k(y1+y2+2)+(x1+x2)=0,
又∵${y}_{1}+{y}_{2}=k{x}_{1}+\frac{3}{2}+k{x}_{2}+\frac{3}{2}$=k(x1+x2)+3,
∴k[k(x1+x2)+5]+(x1+x2)=0,即(k2+1)(x1+x2)+5k=0,③
②代入③,得-(k2+1)•$\frac{9k}{1+3{k}^{2}}$+5k=0,整理,得${k}^{2}=\frac{2}{3}$>$\frac{5}{12}$,滿足①,
解得k=±$\frac{\sqrt{6}}{3}$.
點評 本題主要考查直線與圓錐曲線等基礎知識,考查運算求解能力、推理論證能力,考查數(shù)形結合、化歸思想.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com