欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

7.橢圓$\frac{{x}^{2}}{4}$+y2=1中,以點(diǎn)M(1,$\frac{1}{2}$)為中點(diǎn)的弦所在直線方程是x+2y-2=0.

分析 判斷M在橢圓內(nèi),設(shè)弦AB的端點(diǎn)為(x1,y1),(x2,y2),代入橢圓方程,運(yùn)用點(diǎn)差法,結(jié)合直線的斜率公式和中點(diǎn)坐標(biāo)公式,再由點(diǎn)斜式方程,即可得到所求方程.

解答 解:由M點(diǎn)代入橢圓方程可得,$\frac{1}{4}$+$\frac{1}{4}$<1,
即M在橢圓內(nèi),則直線與橢圓相交.
設(shè)弦AB的端點(diǎn)為(x1,y1),(x2,y2),
即有$\frac{{{x}_{1}}^{2}}{4}$+y12=1,$\frac{{{x}_{2}}^{2}}{4}$+y22=1,
兩式相減可得,$\frac{({x}_{1}-{x}_{2})({x}_{1}+{x}_{2})}{4}$+(y1-y2)(y1+y2)=0,
由中點(diǎn)坐標(biāo)公式可得,x1+x2=2,y1+y2=1,
代入上式,可得kAB=$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=-$\frac{{x}_{1}+{x}_{2}}{4({y}_{1}+{y}_{2})}$=-$\frac{1}{2}$,
即有弦所在的直線方程為y-$\frac{1}{2}$=-$\frac{1}{2}$(x-1),
即為x+2y-2=0.
故答案為:x+2y-2=0.

點(diǎn)評(píng) 本題考查橢圓的方程的運(yùn)用,考查點(diǎn)差法求中點(diǎn)弦方程,同時(shí)考查直線的斜率和中點(diǎn)坐標(biāo)公式的運(yùn)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.如圖是2016年我校在紅歌比賽上,七位評(píng)委為某班打出的分?jǐn)?shù)的莖葉統(tǒng)計(jì)圖,這組數(shù)據(jù)的中位數(shù)是(  )
A.85B.84C.82D.81

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=x+$\frac{a}{x}$-2lnx,a∈R.
(1)若f(x)在定義域上為單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍;
(2)若函數(shù)f(x)有兩個(gè)極值點(diǎn)x1,x2,且x1<x2,證明:f(x2)<x2-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.O為平面上的定點(diǎn),A、B、C是平面上不共線的三點(diǎn),若($\overrightarrow{OA}$-$\overrightarrow{OC}$)•($\overrightarrow{OA}$+$\overrightarrow{OC}$-2$\overrightarrow{OB}$)=0,則△ABC是( 。
A.以AB為底邊的等腰三角形B.以AB為斜邊的直角三角形
C.以AC為底邊的等腰三角形D.以AC為斜邊的直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知直線過(guò)點(diǎn)M(-3,0),且傾斜角為30°,橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左焦點(diǎn)為F1(-2,0),離心率$e=\frac{{\sqrt{6}}}{3}$.
(Ⅰ)求直線l和橢圓C的方程;
(Ⅱ)求證:直線l和橢圓C有兩個(gè)交點(diǎn);
(Ⅲ)設(shè)直線l和橢圓C的兩個(gè)交點(diǎn)為A,B,求證:以線段AB為直徑的圓經(jīng)過(guò)點(diǎn)F1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知F1,F(xiàn)2分別是橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右焦點(diǎn),點(diǎn)A是橢圓的右頂點(diǎn),O為坐標(biāo)原點(diǎn),若橢圓上的一點(diǎn)M滿足MF1⊥MF2,|MA|=|MO|,則橢圓的離心率為(  )
A.$\frac{\sqrt{10}}{5}$B.$\frac{2}{3}$C.$\frac{\sqrt{2}}{2}$D.$\frac{2\sqrt{7}}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=lnx-2x+2.
(1)求函數(shù)f(x)的最大值;
(2)當(dāng)a>0時(shí),不等式f(x)≥-ax2+ax在x∈[1,e](e為自然對(duì)數(shù)的底數(shù)e≈2.71828)上恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.在△ABC中a,b,c分別為角A,B,C的對(duì)邊,且$\sqrt{3}$bcosA=asinB
(Ⅰ)求角A
(Ⅱ)若a=2$\sqrt{3}$,求bc的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.若命題“?x0∈R使得${x_0}^2+a{x_0}+a+3<0$”為假命題,則實(shí)數(shù)a的取值范圍是(  )
A.[-6,2]B.[-6,-2]C.[-2,6]D.$[{2-\sqrt{7}{,_{\;}}2+\sqrt{7}}]$

查看答案和解析>>

同步練習(xí)冊(cè)答案