分析 根據(jù)條件便可得到$x=\frac{4}{{y}^{2}}$,從而根據(jù)三個(gè)數(shù)的均值不等式可以得到$x+2y=\frac{4}{{y}^{2}}+y+y≥3\root{3}{4}$,并可得出“=”成立的條件,這樣便可求出x+2y的最小值,而同理可以求出x+y的最小值.
解答 解:∵x,y∈R+,xy2=4;
∴$x=\frac{4}{{y}^{2}}$;
∴$x+2y=\frac{4}{{y}^{2}}+y+y≥3\root{3}{\frac{4}{{y}^{2}}•y•y}=3\root{3}{4}$,當(dāng)且僅當(dāng)x=y=$\root{3}{4}$時(shí)取“=”;
∴x+2y的最小值為$3\root{3}{4}$;
同理,$x+y=\frac{4}{{y}^{2}}+\frac{y}{2}+\frac{y}{2}≥3\root{3}{\frac{4}{{y}^{2}}•\frac{y}{2}•\frac{y}{2}}=3$,當(dāng)且僅當(dāng)x=1,y=2時(shí)取“=”;
∴x+y的最小值為3.
點(diǎn)評(píng) 考查基本不等式用于求最值的方法,注意在應(yīng)用$a+b+c≥3\root{3}{abc}$求a+b+c最小值時(shí),應(yīng)使得abc為常數(shù),且a,b,c>0,并會(huì)判斷“=”成立的條件.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | (-∞,0) | B. | (0,+∞) | C. | (1,+∞) | D. | (-∞,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $-\frac{{\sqrt{3}}}{2}$ | B. | $-\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com