| A. | $-\frac{{\sqrt{3}}}{2}$ | B. | $-\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
分析 由周期求出ω,由五點(diǎn)法作圖求出φ的值,可得函數(shù)的解析式,再根據(jù)正弦函數(shù)圖象的對稱性,求得 x1+x2=$\frac{5π}{6}$,可得f(x1+x2)的值.
解答 解:由函數(shù)f(x)=sin(ωx+φ)(x∈R)$(ω>0,|φ|<\frac{π}{2})$的部分圖象,
可得$\frac{1}{2}$•$\frac{2π}{ω}$=$\frac{2π}{3}$-$\frac{π}{6}$,∴ω=2.
再根據(jù)五點(diǎn)法作圖可的2•$\frac{π}{6}$+φ=0,∴φ=-$\frac{π}{3}$,f(x)=sin(2x-$\frac{π}{3}$).
在${x_1},{x_2}∈(\frac{π}{6},\frac{2π}{3})$上,且f(x1)=f(x2),則$\frac{1}{2}$(x1+x2)=$\frac{\frac{π}{6}+\frac{2π}{3}}{2}$,
∴x1+x2=$\frac{5π}{6}$,f(x1+x2)=sin(2•$\frac{5π}{6}$-$\frac{π}{3}$)=sin$\frac{4π}{3}$=-sin$\frac{π}{3}$=-$\frac{\sqrt{3}}{2}$,
故選:A.
點(diǎn)評(píng) 本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,由周期求出ω,由五點(diǎn)法作圖求出φ的值,正弦函數(shù)的圖象的對稱性,屬于基礎(chǔ)題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | x2-4y2=2 | B. | x2-y2=2 | C. | x2-2y2=1 | D. | 2x2-y2=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $4+\frac{2π}{3}$ | B. | $8+\frac{2π}{3}$ | C. | $4+\frac{4π}{3}$ | D. | $6+\frac{4π}{3}$ |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com