| A. | (1,0) | B. | ($\frac{4}{3}$,0) | C. | ($\frac{5}{3}$,0) | D. | (2,0) |
分析 由焦點(diǎn)弦的性質(zhì)可得:|AF|=${x}_{A}+\frac{1}{2}$,|BF|=$\frac{2}{3}+\frac{1}{2}$=$\frac{7}{6}$,|CF|=${x}_{C}+\frac{1}{2}$.設(shè)線段AC的中點(diǎn)為M(a,b),利用|AF|,|BF|,|CF|為等差數(shù)列可得:$a=\frac{2}{3}$,由于${y}_{A}^{2}=2{x}_{A}$,${y}_{C}^{2}=2{x}_{C}$,相減可得:bkAC=1.線段AC的垂直平分線的方程為:y-b=-b(x-$\frac{2}{3}$),即可得出定點(diǎn).
解答 解:|AF|=${x}_{A}+\frac{1}{2}$,|BF|=$\frac{2}{3}+\frac{1}{2}$=$\frac{7}{6}$,|CF|=${x}_{C}+\frac{1}{2}$,
∵|AF|,|BF|,|CF|為等差數(shù)列,
∴2|BF|=|AF|+|CF|,
∴$\frac{7}{3}$=${x}_{A}+\frac{1}{2}$+${x}_{C}+\frac{1}{2}$,
化為xA+xC=$\frac{4}{3}$.
設(shè)線段AC的中點(diǎn)為M(a,b),則$a=\frac{2}{3}$,
∵${y}_{A}^{2}=2{x}_{A}$,${y}_{C}^{2}=2{x}_{C}$,
∴$\frac{({y}_{A}+{y}_{C})({y}_{A}-{y}_{C})}{{x}_{A}-{x}_{C}}$=2,
∴2bkAC=2,即bkAC=1.
∴線段AC的垂直平分線的斜率k=-$\frac{1}{{k}_{AC}}$=-b,
其方程為:y-b=-b(x-$\frac{2}{3}$),
因此必過定點(diǎn)$(\frac{5}{3},0)$.
故選:C.
點(diǎn)評 本題考查了拋物線的標(biāo)準(zhǔn)方程及其性質(zhì)、焦點(diǎn)弦長公式、線段的垂直平分線方程、“點(diǎn)差法”、等差數(shù)列的性質(zhì),考查了推理能力與計算能力,屬于中檔題.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com