分析 如圖所示:根據(jù)cosBcosC=$\frac{m}{4\sqrt{2}}$•$\frac{n}{5}$=$\frac{1}{2}$[cos(C-B)+cos(C+B)]=$\frac{1}{2}$[$\frac{7\sqrt{2}}{10}$-cosA],再由cosA=cosαcosβ-sinαsinβ═$\frac{{h}^{2}}{4\sqrt{10}}$-$\frac{1}{2}$($\frac{7\sqrt{2}}{10}$-cosA),求得cosA=$\frac{{h}^{2}}{2\sqrt{10}}$-$\frac{7\sqrt{2}}{10}$.再根據(jù)cos(C-B)=cos(C-B)=cosCcosB+sinCsinB=$\frac{m}{4\sqrt{2}}$•$\frac{n}{5}$+$\frac{h}{5}$•$\frac{h}{4\sqrt{2}}$=$\frac{7\sqrt{2}}{10}$,以及 ${(4\sqrt{2})}^{2}$-m2=52-n2 =h2,求得m和h2的值,可得cosA的值.
解答
解:在△ABC中,已知b=6,c=5,cos(C-B)=$\frac{7\sqrt{2}}{10}$,
作AD⊥BC,D為垂足.
設(shè)BD=m,CD=n,AD=h,∠BAD=α,∠CAD=β,如圖所示:
則cosBcosC=$\frac{m}{4\sqrt{2}}$•$\frac{n}{5}$,
又cosBcosC=$\frac{1}{2}$[cos(C-B)+cos(C+B)]=$\frac{1}{2}$($\frac{7\sqrt{2}}{10}$-cosA),
∴$\frac{m}{4\sqrt{2}}$•$\frac{n}{5}$=$\frac{1}{2}$($\frac{7\sqrt{2}}{10}$-cosA).
∴cosA=cos(α+β)=cosαcosβ-sinαsinβ=$\frac{h}{4\sqrt{2}}$•$\frac{h}{\sqrt{5}}$-$\frac{m}{4\sqrt{2}}$•$\frac{n}{5}$=$\frac{{h}^{2}}{4\sqrt{10}}$-$\frac{mn}{4\sqrt{10}}$=$\frac{{h}^{2}}{4\sqrt{10}}$-$\frac{1}{2}$($\frac{7\sqrt{2}}{10}$-cosA),
∴cosA=$\frac{{h}^{2}}{2\sqrt{10}}$-$\frac{7\sqrt{2}}{10}$.
∵cos(C-B)=cosCcosB+sinCsinB=$\frac{m}{4\sqrt{2}}$•$\frac{n}{5}$+$\frac{h}{5}$•$\frac{h}{4\sqrt{2}}$=$\frac{7\sqrt{2}}{10}$,${(4\sqrt{2})}^{2}$-m2=52-n2 =h2,
解得m=4,h2=16,∴cosA=$\frac{16}{2\sqrt{10}}$-$\frac{7\sqrt{2}}{10}$=$\frac{8\sqrt{10}-7\sqrt{2}}{10}$.
點(diǎn)評 本題主要考查兩角和差的三角公式、直角三角形中的邊角關(guān)系,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想,屬于中檔題.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com