| A. | f(2)>e2f(0),f(2012)<e2012f(0) | B. | f(2)<e2f(0),f(2012)<e2012f(0) | ||
| C. | f(2)>e2f(0),f(2012)>e2012f(0) | D. | f(2)<e2f(0),f(2012)>e2012f(0) |
分析 求函數(shù)F(x)=$\frac{f(x)}{{e}^{x}}$的導(dǎo)數(shù),判斷函數(shù)的單調(diào)性,利用單調(diào)性進(jìn)行判斷即可.
解答 解:∵F(x)=$\frac{f(x)}{{e}^{x}}$,
∴函數(shù)的導(dǎo)數(shù)F′(x)=$\frac{f′(x){e}^{x}-f(x){e}^{x}}{({e}^{x})^{2}}$=$\frac{f′(x)-f(x)}{{e}^{x}}$,
∵f′(x)<f(x),
∴F′(x)<0,
即函數(shù)F(x)是減函數(shù),
則F(0)>F(2),F(xiàn)(0)>F(2012),
即$\frac{f(0)}{{e}^{0}}>\frac{f(2)}{{e}^{2}}$,$\frac{f(0)}{{e}^{0}}$>$\frac{f(2012)}{{e}^{2012}}$
即f(2)<e2f(0),f(2012)<e2012f(0),
故選:B
點評 本題主要考查函數(shù)值的大小比較,根據(jù)條件求函數(shù)的導(dǎo)數(shù),判斷函數(shù)的單調(diào)性是解決本題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | (3x)′=3xln3 | |
| B. | (x2lnx)′=2xlnx+x | |
| C. | $(\frac{cosx}{x})'=\frac{xsinx-cosx}{x^2}$ | |
| D. | $({2^{ln({x^2}+1)}})'=\frac{2xln2}{{{x^2}+1}}•{2^{ln({x^2}+1)}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 1 | B. | $\sqrt{2}$ | C. | 2 | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com