欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

10.設(shè)函數(shù)f(x)=|x-3|+|x+7|.
(1)解不等式:f(x)<16;
(2)若存在x0∈R,使f(x0)<a,求實(shí)數(shù)a的取值范圍.

分析 (1)根據(jù)絕對(duì)值的意義求出方程的根即可;(2)將f(x)寫成分段函數(shù)的形式,從而求出f(x)的最小值,進(jìn)而求出a的范圍即可.

解答 解:(1)利用數(shù)形結(jié)合易知:方程|x-3|+|x+7|=16的兩根為x1=-10,x2=6,
∴不等式f(x)=|x-3|+|x+7|<16的解集為(-10,6),
注:用零點(diǎn)分段法亦可.
(2)∵f(x)=|x-3|+|x+7|=$\left\{\begin{array}{l}{-2x-4,(x<-7)}\\{10,(-7≤x≤3)}\\{2x+4,(x>3)}\end{array}\right.$,
∴當(dāng)x∈[-7,3]時(shí),f(x)min=10;
∴依題意知:實(shí)數(shù)a的取值范圍為a>10,即a∈(10,+∞).

點(diǎn)評(píng) 本題考查了絕對(duì)值的意義,函數(shù)的最值問題,考查分類討論思想,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.求下列各式的值:
(1)(sin$\frac{5π}{12}$+cos$\frac{5π}{12}$)(sin$\frac{5π}{12}$-cos$\frac{5π}{12}$)
(2)cos4$\frac{α}{2}$-sin4$\frac{α}{2}$
(3)$\frac{1}{1-tanα}$-$\frac{1}{1+tanα}$
(4)1+2cos2θ-cos2θ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在等比數(shù)列{an}中,a2=3,a5=81,bn=1+2log3an
(1)求數(shù)列{bn}的前n項(xiàng)的和;
(2)已知數(shù)列$\left\{{\frac{1}{{{b_n}{b_{n+1}}}}}\right\}$的前項(xiàng)的和為Sn,證明:${S_n}<\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知橢圓C的中心在原點(diǎn),離心率等于$\frac{1}{2}$,它的一個(gè)短軸端點(diǎn)點(diǎn)恰好是拋物線$y=\frac{{\sqrt{3}}}{24}{x^2}$的焦點(diǎn).
(1)求橢圓C的方程;
(2)已知P(2,3)、Q(2,-3)是橢圓上的兩點(diǎn),A,B是橢圓上位于直線PQ兩側(cè)的動(dòng)點(diǎn).
①若直線AB的斜率為$\frac{1}{2}$,求四邊形APBQ面積的最大值;
②當(dāng)A,B運(yùn)動(dòng)時(shí),滿足直線PA、PB與X軸始終圍成一個(gè)等腰三角形,試問直線AB的斜率是否為定值,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.某市氣象部門對(duì)該市中心城區(qū)近4年春節(jié)期間(每年均統(tǒng)計(jì)春節(jié)假期的前7天)的空氣污染指數(shù)進(jìn)行了統(tǒng)計(jì)分析,且按是否燃放鞭炮分成兩組,得到如圖的莖葉圖,根據(jù)國家最新標(biāo)準(zhǔn),空氣污染指數(shù)不超過100的表示沒有霧霾,超過100的表示有霧霾.
(Ⅰ)若從莖葉圖有霧霾的14天中隨機(jī)抽取2天,用隨機(jī)變量ξ表示被抽中且未燃放鞭炮的天數(shù),求ξ的分布列及數(shù)學(xué)期望;
(Ⅱ)通過莖葉圖填寫下面的2×2列聯(lián)表,并判斷有多大的把握可以認(rèn)為燃放鞭炮與產(chǎn)生霧霾有關(guān)?
燃放未燃放合計(jì)
有霧霾
無霧霾
合計(jì)
附:獨(dú)立性檢驗(yàn)卡方統(tǒng)計(jì)量:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d為樣本容量;
獨(dú)立性檢驗(yàn)臨界值表:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)$\overrightarrow{a}$與$\overrightarrow$的夾角為60°,且|$\overrightarrow{a}$|=2$\sqrt{2}$,|$\overrightarrow$|=$\sqrt{3}$,則$\overrightarrow{a}$•$\overrightarrow$=$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知函數(shù)f(x)=$\left\{\begin{array}{l}{\sqrt{x},x>0}\\{{2}^{-x},x≤0}\end{array}\right.$,則f[f(-4)]=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的離心率為$\frac{{\sqrt{3}}}{2}$,$P(\sqrt{2},\frac{{\sqrt{2}}}{2})$在橢圓C上.
(Ⅰ) 求橢圓C的方程;
(Ⅱ)直線l與橢圓C交于不同的兩點(diǎn)M、N,O為坐標(biāo)原點(diǎn),且kOM•kON=-$\frac{b^2}{a^2}$.
(。┣笞C:△OMN的面積為定值;
(ⅱ)求$\overrightarrow{OM}•\overrightarrow{ON}$的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知橢圓C中心在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,且該橢圓經(jīng)過點(diǎn)($\frac{1}{2}$,$\frac{\sqrt{6}}{2}$)和點(diǎn)$(\frac{{\sqrt{2}}}{2},-1)$.求
(1)橢圓C的方程;
(2)P,Q,M,N四點(diǎn)在橢圓C上,F(xiàn)1為負(fù)半軸上的焦點(diǎn),直線PQ,MN都過F1且$\overrightarrow{M{F_1}}•\overrightarrow{Q{F_1}}=0$,求四邊形PMQN的面積最小值和最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案