欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

14.若函數(shù)y=f(x)的定義域為R,對于定義域內(nèi)的任意x,存在實數(shù)a使得f(x+a)=f(-x)成立,則稱此函數(shù)具有“P(a)性質(zhì)”.
(1)判斷函數(shù)y=sinx是否具有“P(a)性質(zhì)”,若具有“P(a)性質(zhì)”,求出所有a的值;若不具有“P(a)性質(zhì)”,說明理由;
(2)已知y=f(x)具有“P(0)性質(zhì)”,且當x≤0時f(x)=(x+m)2,求y=f(x)在[0,1]上的最大值.

分析 (1)根據(jù)題意先檢驗sin(x+a)=sin(-x)是否成立即可檢驗y=sinx是否具有“P(a)性質(zhì)”
(2)由y=f(x)具有“P(0)性質(zhì)可得f(x)=f(-x),結(jié)合x≤0時的函數(shù)解析式可求x≥0的函數(shù)解析式,結(jié)合m的范圍判斷函數(shù)y=f(x)在[0,1]上的單調(diào)性即可求解函數(shù)的最值.

解答 解:(1)由sin(x+a)=sin(-x)得sin(x+a)=-sinx,
根據(jù)誘導(dǎo)公式得a=2kπ+π(k∈Z).
∴y=sinx具有“P(a)性質(zhì)”,其中a=2kπ+π(k∈Z).…(4分)
(2)∵y=f(x)具有“P(0)性質(zhì)”,
∴f(x)=f(-x).
設(shè)x≥0,則-x≤0,∴f(x)=f(-x)=(-x+m)2=(x-m)2
∴f(x)=$\left\{\begin{array}{l}{(x+m)^{2},}&{x≤0}\\{(x-m)^{2},}&{x>0}\end{array}\right.$…(6分)
當m≤0時,∵y=f(x)在[0,1]遞增,
∴x=1時${y_{max}}={(1-m)^2}$
當$0<m<\frac{1}{2}$時,y=f(x)在[0,m]上遞減,在[m,1]上遞增,且f(0)=m2<f(1)=(1-m)2
∴x=1時${y_{max}}={(1-m)^2}$
當$m≥\frac{1}{2}$時,
∵y=f(x)在[0,m]上遞減,在[m,1]上遞增,且f(0)=m2≥f(1)=(1-m)2,
∴x=0時${y_{max}}={m^2}$
綜上所述:當$m<\frac{1}{2}$時,${y_{max}}=f(1)={(1-m)^2}$;
當$m≥\frac{1}{2}$時,${y_{max}}=f(0)={m^2}$…(12分)

點評 本題考查周期函數(shù),著重考查函數(shù)在一定條件下的恒成立問題與最值求解的相互轉(zhuǎn)化,綜合考察構(gòu)造函數(shù)、分析轉(zhuǎn)化、分類討論的數(shù)學(xué)思想與方法,難度大,思維深刻,屬于難題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知數(shù)列{an}滿足:(1+a1)•(2+a2)•(4+a3)•…•(2n-1+an)=n2,則{an}的通項公式為$\left\{\begin{array}{l}{0,n=1}\\{(\frac{n}{n-1})^{2}-{2}^{n-1},n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)集合A={y|y=x2-2x+1,x∈R},B={y|y=-x2+2x+10,x∈R},求A∪B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.將3個球任意放入4個大玻璃杯中,杯中球最多的個數(shù)為ξ,求ξ分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知等差數(shù)列{an}的前n項和為Sn,且a3=S3=3.
(1)求{an}的通項公式;
(2)若{bn-an}是首項為1,公比為2的等比數(shù)列,求數(shù)列{bn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.萌萌心愛的3×3×3魔方掉進了化糞池,萌萌撿起來后拆開魔方,隨意撿起一塊放進嘴里,不中招的概率是$\frac{1}{27}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知|$\overrightarrow{a}$|=3,|$\overrightarrow$|=2,則|$\overrightarrow{a}$+$\overrightarrow$|的取值范圍是[1,5].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)|$\overrightarrow{a}$|=3,|$\overrightarrow$|=2,|$\overrightarrow{c}$|=5,向量$\overrightarrow{a}$與$\overrightarrow$的夾角為$\frac{π}{6}$,向量$\overrightarrow$與$\overrightarrow{c}$的夾角為$\frac{π}{3}$,計算:
(1)|($\overrightarrow{a}$•$\overrightarrow$)•$\overrightarrow{c}$|;
(2)|$\overrightarrow{a}$•($\overrightarrow$•$\overrightarrow{c}$)|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.求函數(shù)y=$\sqrt{x-1}$+$\sqrt{2-x}$的值域.

查看答案和解析>>

同步練習(xí)冊答案