分析 (Ⅰ)確定c=$\sqrt{{a}^{2}-1}$,即可求橢圓C的方程(用a表示);
(Ⅱ)設(shè)直線方程,代入橢圓方程,求出三角形F1AB面積,分類討論,即可求出最大值.
解答 解:(Ⅰ)由題意,橢圓的上頂點(diǎn)為(0,1),下頂點(diǎn)為(0,-1),
當(dāng)B與上(或下)頂點(diǎn)重合時(shí),三角形F1BF2面積最大S=$\frac{1}{2}•2c•1$=$\sqrt{{a}^{2}-1}$,
∴c=$\sqrt{{a}^{2}-1}$,
∴橢圓C的方程為$\frac{{x}^{2}}{{a}^{2}}+{y}^{2}=1$;
(Ⅱ)三角形F1AB面積S=$\frac{1}{2}•AB•2csinα$=c•AB•sinα(α為F2B與x軸正向所成的角)
設(shè)F2(c,0),A(x1,y1),B(x2,y2),AB:y=k(x-c),
代入橢圓方程可得(1+a2k2)x2-2a2k2cx+a2k2c2-a2=0,
∴x1+x2=$\frac{2{a}^{2}{k}^{2}c}{1+{a}^{2}{k}^{2}}$,x1x2=$\frac{{a}^{2}{k}^{2}{c}^{2}-{a}^{2}}{1+{a}^{2}{k}^{2}}$
∴AB=$\sqrt{1+{k}^{2}}$|x1-x2|=$\frac{2a}{1+({a}^{2}-1)si{n}^{2}α}$,
∴S=c•AB•sinα=$\frac{2ac}{\frac{1}{sinα}+({a}^{2}-1)sinα}$,
a$≥\sqrt{2}$時(shí),S≤$\frac{2ac}{2\sqrt{{a}^{2}-1}}$=a;
1<a<$\sqrt{2}$時(shí),S≤$\frac{2ac}{{a}^{2}}$=$\frac{2\sqrt{{a}^{2}-1}}{a}$.
點(diǎn)評(píng) 本題考查橢圓的方程和性質(zhì),主要考查橢圓的方程的運(yùn)用,聯(lián)立直線方程,運(yùn)用韋達(dá)定理,同時(shí)考查求最值,屬于中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | (-∞,1] | B. | [1,+∞) | C. | (0,1] | D. | (-1,1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | P∪T∪S=I | B. | P=T=S | C. | T=I | D. | P∪CIS=I |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com