分析 先利用三角函數(shù)的和角公式化左邊=2R(sinAcosB-cosAsinB),再利用余弦化成三角形邊的關系化簡已知等式“(a2+b2)sin(A-B)=(a2-b2)sinC,”,得到a2=b2或a2+b2=c2,從而得出該三角形是等腰三角形或直角三角形.
解答 解:∵2Rsin(A-B)=2R(sinAcosB-cosAsinB)=2RsinAcosB-2RsinBcosA=a•$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$-b•$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{{a}^{2}-^{2}}{c}$,
∴已知等式變形得:(a2+b2)•$\frac{{a}^{2}-^{2}}{2Rc}$=(a2-b2)•$\frac{c}{2R}$,
∴a2=b2或a2+b2=c2,
則△ABC是等腰三角形或直角三角形.
故答案為:等腰或直角三角形.
點評 此題考查了正弦、余弦定理,以及特殊角的三角函數(shù)值,熟練掌握余弦定理是解本題的關鍵.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | f(x)=1,g(x)=$\frac{x}{x}$ | B. | f(x)=$\sqrt{x+1}$•$\sqrt{x-1}$,g(x)=$\sqrt{{x}^{2}-1}$ | ||
| C. | f(x)=x,g(x)=$\root{3}{{x}^{3}}$ | D. | f(x)=$\frac{{x}^{2}-1}{x-1}$,g(x)=x+1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com