分析 (1)①先求出g(x)的導數,通過討論a的范圍,得到函數的單調區(qū)間,②將a的值代入,求出g(m)的導數,得到函數的單調性,求出函數的最大值,從而證出結論;
(2)由于f(x)的圖象與x軸交于兩個不同的點A(x1,0),B(x2,0),可得方程2lnx-x2+ax=0的兩個根為x1,x2,得到a的值,可得f′($\frac{{x}_{1}+{x}_{2}}{2}$)=$\frac{4}{{x}_{1}{+x}_{2}}$-$\frac{2(l{nx}_{1}-l{nx}_{2})}{{{x}_{1}-x}_{2}}$.經過變形只要證明 $\frac{2{(x}_{2}{-x}_{1})}{{{x}_{1}+x}_{2}}$+ln$\frac{{x}_{1}}{{x}_{2}}$<0,通過換元再利用導數研究其單調性即可得出.
解答
解:(1)①g(x)=2lnx+ax,(x>0),g′(x)=$\frac{2}{x}$+a=$\frac{ax+2}{x}$,
a≥0時:g′(x)>0,g(x)在(0,+∞)遞增;
a<0時:令g′(x)>0,解得:0<x<-$\frac{2}{a}$,令g′(x)<0,解得:x>-$\frac{2}{a}$,
∴g(x)在(0,-$\frac{2}{a}$)遞增,在(-$\frac{2}{a}$,+∞)遞減;
②g(m)=2lnm-2m,(m≥1),g′(m)=$\frac{2}{m}$-2<0,
∴g(m)在[1,+∞)單調遞減,
∴g(m)最大值=g(1)=-2,
畫出函數y=t(t≤-2)和g(m)的圖象,如圖示:
∴存在唯一的m∈[1,+∞),使t=g(m);
(2)∵f(x)的圖象與x軸交于兩個不同的點A(x1,0),B(x2,0),
∴方程2lnx-x2+ax=0的兩個根為x1,x2,
則$\left\{\begin{array}{l}{2l{nx}_{1}{{-x}_{1}}^{2}+{ax}_{1}=0}\\{2l{nx}_{2}{{-x}_{2}}^{2}+{ax}_{2}=0}\end{array}\right.$,
兩式相減得a=(x1+x2)-$\frac{2(l{nx}_{1}-l{nx}_{2})}{{{x}_{1}-x}_{2}}$,
又f(x)=2lnx-x2+ax,f′(x)=$\frac{2}{x}$-2x+a,
則f′($\frac{{x}_{1}+{x}_{2}}{2}$ )=$\frac{4}{{x}_{1}{+x}_{2}}$-$\frac{2(l{nx}_{1}-l{nx}_{2})}{{{x}_{1}-x}_{2}}$.
下證 $\frac{4}{{x}_{1}{+x}_{2}}$-$\frac{2(l{nx}_{1}-l{nx}_{2})}{{{x}_{1}-x}_{2}}$<0(*),
即證明$\frac{2{(x}_{2}{-x}_{1})}{{{x}_{1}+x}_{2}}$+ln$\frac{{x}_{1}}{{x}_{2}}$<0,
令t=$\frac{{x}_{1}}{{x}_{2}}$,∵0<x1<x2,∴0<t<1,
即證明u(t)=$\frac{2(1-t)}{t+1}$+lnt<0在0<t<1上恒成立.
∵u′(t)=$\frac{-2(t+1)-2(1-t)}{{(t+1)}^{2}}$+$\frac{1}{t}$=$\frac{{(t-1)}^{2}}{{t(t+1)}^{2}}$,
又0<t<1,
∴u′(t)>0,
∴u(t)在(0,1)上是增函數,則u(t)<u(1)=0,
從而知$\frac{2{(x}_{2}{-x}_{1})}{{{x}_{1}+x}_{2}}$+ln$\frac{{x}_{1}}{{x}_{2}}$<0,
故(*)式<0,即f′($\frac{{x}_{1}+{x}_{2}}{2}$)<0成立.
點評 本題考查了利用導數研究函數的單調性極值與最值、導數的幾何意義、方程實數根的個數轉化為圖象的交點,考查了推理能力和計算能力,屬于難題.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com