分析 (I)化簡已知等式可得2cos2A+3cosA-2=0,即(2cosA-1)(cosA+2)=0,即可解得cosA的值,結(jié)合范圍0<A<π,即可求得A的值.
(II)又由正弦定理,得$\frac{bc}{{a}^{2}}$•sin2A═$\frac{5}{7}$.由余弦定理a2=b2+c2-2bccosA,又b=5,即可解得c的值,由三角形面積公式即可得解.
解答 解:(I)由3cosBcosC+2=3sinBsinC+2cos2A,得
2cos2A+3cos A-2=0,即(2cos A-1)(cos A+2)=0.----(2分)
解得cos A=$\frac{1}{2}$或cos A=-2(舍去).----(4分)
因?yàn)?<A<π,所以A=$\frac{π}{3}$.-----(6分)
(II)又由正弦定理,得sinBsinC=$\frac{a}$sin A•$\frac{c}{a}$sin A=$\frac{bc}{{a}^{2}}$•sin2A═$\frac{5}{7}$.---(8分)
解得:bc=$\frac{20}{21}{a}^{2}$,
由余弦定理,得a2=b2+c2-2bccosA,又b=5,所以c=4或c=$\frac{25}{4}$----(10分)
所以可得:S=$\frac{1}{2}$bcsinA=$\frac{1}{2}$bc•$\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{4}$bc=5$\sqrt{3}$或S=$\frac{125\sqrt{3}}{16}$----(12分)
點(diǎn)評 本題主要考查了正弦定理,余弦定理,兩角和與差的正弦函數(shù)公式,三角形面積公式的應(yīng)用,屬于基本知識的考查.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 3 | B. | -3 | C. | $\frac{1}{3}$ | D. | -$\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 1或$\sqrt{7}$ | B. | $\sqrt{7}$ | C. | $\sqrt{3}$ | D. | 1或$\sqrt{3}$ |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com