分析 (1)由已知中函數(shù)f(x)=(x2+ax+b)e3-x(x∈R)的一個(gè)極值點(diǎn)是x=3.我們根據(jù)函數(shù)在某點(diǎn)取得極值的條件,易得f′(3)=0,進(jìn)而構(gòu)造方程求出a與b的關(guān)系式,分析函數(shù)在各個(gè)區(qū)間上的符號,即可得到答案.
(2)根據(jù)g(x)的表達(dá)式,利用導(dǎo)數(shù)法確定函數(shù)的單調(diào)性,再根據(jù)(1)的結(jié)論,我們可以構(gòu)造一個(gè)關(guān)于a的不等式,解不等式即可得到答案.
解答 解:(1)f′(x)=-e3-x,(1分)
由f′(3)=0,得-e3-3=0,即得b=-3-2a,(2分)
則f′(x)=-(x-3)(x+a+1)e3-x.
令f′(x)=0,得x1=3或x2=-a-1,由于x=3是極值點(diǎn),∴-a-1≠3,即a≠-4,(4分)
當(dāng)a<-4時(shí),x2>3=x1,則在區(qū)間(-∞,3)上,f′(x)<0,
f(x)為減函數(shù);在區(qū)間(3,-a-1)上,f′(x)>0,f(x)為增函數(shù);
在區(qū)間(-a-1,+∞)上,f′(x)<0,f(x)為減函數(shù). (5分)
當(dāng)a>-4時(shí),x2<3=x1,則在區(qū)間(-∞,-a-1)上,f′(x)<0,f(x)為減函數(shù);
在區(qū)間(-a-1,3)上,f′(x)>0,f(x)為增函數(shù);在區(qū)間(3,+∞)上,f′(x)<0,f(x)為減函數(shù);
(2)由(Ⅰ)知,當(dāng)a>0時(shí),f(x)在區(qū)間(0,3)上的單調(diào)遞增,在區(qū)間(3,4)上單調(diào)遞減,
由于f(x)連續(xù),而f(0)=-(2a+3)e3<0,f(4)=(2a+13)e-1>0,f(3)=a+6,
那么f(x)在區(qū)間上的值域是:[-(2a+3)e3,a+6],
又g(x)=$\frac{{-e}^{2}(x-3)(x+a+1{)e}^{3-x}}{3-x}$=(x+a+1)e5-x,(a>0,x∈[0,4]),
g′(x)=-e5-x(x+a)<0,
∴g(x)在區(qū)間上是減函數(shù),而g(0)=(a+1)e5,g(4)=(a+5)e,
∴它在區(qū)間上的值域是:[e(a+5),e5(a+1)],
∴只需e(a+5)-(a+6)<5e2-6即可,解得:a<5e,
∴a的范圍是:(0,5e).
點(diǎn)評 本題考查的知識點(diǎn)是函數(shù)在某點(diǎn)取得極值的條件,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,其中根據(jù)已知中的函數(shù)的解析式,結(jié)合導(dǎo)數(shù)公式,求出函數(shù)的導(dǎo)函數(shù)的解析式,是解答本題的關(guān)鍵.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 2+i | B. | 2 i | C. | 1+i | D. | -1-i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 夾在兩個(gè)平行平面間的平行線段相等 | |
| B. | 過直線l外一點(diǎn)M有且僅有一個(gè)平面α與直線l垂直 | |
| C. | 垂直于同一條直線的兩個(gè)平面平行 | |
| D. | 空間中如果兩個(gè)角的兩邊分別對應(yīng)平行,那么這兩個(gè)角相等 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com