已知向量a=(1,0,-1),則下列向量中與a成60°夾角的是( )
A.(-1,1,0) B.(1,-1,0)
C.(0,-1,1) D.(-1,0,1)
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)不等式組
表示的平面區(qū)域?yàn)镈,在D內(nèi)任取一點(diǎn)P(x,y),若滿足2x+y≤b的概率大于
,則實(shí)數(shù)b的取值范圍是( )
A.(0,1) B.(0,2)
C.(1,+∞) D.(2,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖11,網(wǎng)格紙上正方形小格的邊長(zhǎng)為1(表示1 cm),圖中粗線畫(huà)出的是某零件的三視圖,該零件由一個(gè)底面半徑為3 cm,高為6 cm的圓柱體毛坯切削得到,則切削掉部分的體積與原來(lái)毛坯體積的比值為( )
![]()
圖11
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖15,三棱柱ABC A1B1C1中,側(cè)面BB1C1C為菱形,AB⊥B1C.
![]()
圖15
(1)證明:AC=AB1;
(2)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A A1B1 C1的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖16,四棱錐P ABCD中,ABCD為矩形,平面PAD⊥平面ABCD.
![]()
圖16
(1)求證:AB⊥PD.
(2)若∠BPC=90°,PB=
,PC=2,問(wèn)AB為何值時(shí),四棱錐P ABCD的體積最大?并求此時(shí)平面BPC與平面DPC夾角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖13,正方形AMDE的邊長(zhǎng)為2,B,C分別為AM,MD的中點(diǎn).在五棱錐P ABCDE中,F為棱PE的中點(diǎn),平面ABF與棱PD,PC分別交于點(diǎn)G,H.
(1)求證:AB∥FG;
(2)若PA⊥底面ABCDE,且PA=AE,求直線BC與平面ABF所成角的大小,并求線段PH的長(zhǎng).
![]()
圖13
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖15,三棱柱ABC A1B1C1中,側(cè)面BB1C1C為菱形,AB⊥B1C.
![]()
圖15
(1)證明:AC=AB1;
(2)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A A1B1 C1的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
一個(gè)壇子里有編號(hào)為1,2,…,12的12個(gè)大小相同的球,其中1到6號(hào)球是紅球,其余的是黑球,若從中任取兩個(gè)球,則取到的都是紅球,且至少有1個(gè)球的號(hào)碼是偶數(shù)的概率為( )
A.
B.![]()
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知圓C:x2+2x+y2=0的一條斜率為1的切線為l1,且與l1垂直的直線l2平分該圓,則直線l2的方程為( 。
A. x﹣y+1=0 B. x﹣y﹣1=0 C. x+y﹣1=0 D. x+y+1=0
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com