| A. | 2sin α-2cos α+2 | B. | sin α-$\sqrt{3}$cos α+3 | C. | 3sin α-$\sqrt{3}$cos α+1 | D. | 2sin α-cos α+1 |
分析 利用余弦定理求得正方形的邊長(zhǎng),則正方形的面積可求得.利用正弦定理分別求得小等腰三角形的面積,最后相加即可.
解答 解:正方形的邊長(zhǎng)為$\sqrt{1+1-2•1•1•cosα}$=$\sqrt{2-2cosα}$,
∴正方形的面積為2-2cosα,
等腰三角形的面積為$\frac{1}{2}$•1•1•sinα=$\frac{1}{2}$sinα,
∴八邊形的面積為4•$\frac{1}{2}$sinα+2-2cosα=2sin α-2cos α+2,
故選:A.
點(diǎn)評(píng) 本題主要考查了余弦定理和正弦定理的應(yīng)用.解題的關(guān)鍵是把八邊形拆分成三角形和正方形來(lái)解決.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 銳角三角形 | B. | 直角三角形 | C. | 等腰三角形 | D. | 鈍角三角形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | x2-$\frac{y^2}{9}$=1 | B. | x2-y2=15 | C. | $\frac{x^2}{9}-{y^2}$=1 | D. | x2-y2=9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com