欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

11.已知在數(shù)列{an}滿足a1=1,an=an+1(1+2an )(n∈N*).
(1)數(shù)列{$\frac{1}{{a}_{n}}$}是等差數(shù)列;
(2)若a1a2 +a2a3 +…+anan+1>$\frac{16}{33}$,求n的取值范圍.

分析 (1)通過對an=an+1(1+2an )(n∈N*)變形可知$\frac{1}{{a}_{n+1}}$=$\frac{1}{{a}_{n}}$+2,進(jìn)而可知數(shù)列{$\frac{1}{{a}_{n}}$}是以1為首項(xiàng)、2為公差的等差數(shù)列;
(2)通過(1)可知$\frac{1}{{a}_{n}}$=2n-1,裂項(xiàng)可知anan+1=$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),并項(xiàng)相加可知a1a2 +a2a3 +…+anan+1=$\frac{n}{2n+1}$,從而解不等式$\frac{n}{2n+1}$>$\frac{16}{33}$即可.

解答 (1)證明:∵an=an+1(1+2an )(n∈N*),
∴$\frac{1}{{a}_{n+1}}$=$\frac{1+2{a}_{n}}{{a}_{n}}$=$\frac{1}{{a}_{n}}$+2,
即$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$=2,
又∵$\frac{1}{{a}_{1}}$=1,
∴數(shù)列{$\frac{1}{{a}_{n}}$}是以1為首項(xiàng)、2為公差的等差數(shù)列;
(2)解:由(1)可知$\frac{1}{{a}_{n}}$=1+2(n-1)=2n-1,
∴anan+1=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),
∴a1a2 +a2a3 +…+anan+1=$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{2n-1}$-$\frac{1}{2n+1}$)
=$\frac{1}{2}$(1-$\frac{1}{2n+1}$)
=$\frac{n}{2n+1}$,
又∵a1a2 +a2a3 +…+anan+1>$\frac{16}{33}$,
∴$\frac{n}{2n+1}$>$\frac{16}{33}$,
解得:n>16,
∴n的取值范圍是:(16,+∞).

點(diǎn)評 本題考查數(shù)列的通項(xiàng),注意解題方法的積累,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.化簡:$\overrightarrow{MN}$+$\overrightarrow{MP}$+$\overrightarrow{MQ}$+$\overrightarrow{QP}$=$\overrightarrow{MN}+2\overrightarrow{MP}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在△ABC中,角A、B、C的對邊分別為a、b、c,已知A,B,C成等差數(shù)列,2a,2b,3c成等比數(shù)列,求cosA•cosC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知|$\overrightarrow{a}$|=2,|$\overrightarrow$|=2,$\overrightarrow{a}$與$\overrightarrow$的夾角為45°,且λ$\overrightarrow$-$\overrightarrow{a}$與$\overrightarrow{a}$垂直,則實(shí)數(shù)λ=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若f(x)滿足關(guān)系式f(x)-2f($\frac{1}{x}$)=3x,則f(2)的值為(  )
A.3B.-3C.-$\frac{3}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下列根式與分?jǐn)?shù)指數(shù)冪互化中正確的是( 。
A.-$\sqrt{x}$=(-x)${\;}^{\frac{1}{2}}$(x≠0)B.x${\;}^{-\frac{1}{3}}$=-$\root{3}{x}$(x≠0)
C.($\frac{x}{y}$)${\;}^{-\frac{3}{4}}$=$\root{4}{(\frac{y}{x})^{3}}$(xy>0)D.$\root{6}{{y}^{2}}$=y${\;}^{\frac{1}{3}}$(y<0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知x>0,y>0,且x+2y=1,求$\frac{1}{x}+\frac{1}{y}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)是R上的奇函數(shù),且是以4為最小正周期的周期函數(shù),求f(x)的對稱軸.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知|cosθ|=cosθ,|tanθ|=-tanθ,則θ的終邊在(  )
A.第二、四象限B.第一、三象限
C.第三象限或x軸的正半軸上D.第四象限或x軸的正半軸上

查看答案和解析>>

同步練習(xí)冊答案