分析 由條件利用正弦定理可得b2+c2-bc=4.再由余弦定理可得A=$\frac{π}{3}$,利用基本不等式可得bc≤4,當(dāng)且僅當(dāng)b=c=2時(shí),取等號(hào),此時(shí),△ABC為等邊三角形,
解答 解:△ABC中,∵a=2,且(2+b)(sinA-sinB)=(c-b)sinC,
∴利用正弦定理可得(2+b)(a-b)=(c-b)c,即 b2+c2-bc=4,即b2+c2-4=bc,
∴cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{bc}{2bc}$=$\frac{1}{2}$,
∴A=$\frac{π}{3}$.
再由b2+c2-bc=4,利用基本不等式可得 4≥2bc-bc=bc,
∴bc≤4,當(dāng)且僅當(dāng)b=c=2時(shí),取等號(hào),
∴此時(shí),△ABC為等邊三角形,c+2b的最大值是6.
故答案為:6.
點(diǎn)評(píng) 本題主要考查正弦定理,余弦定理的應(yīng)用,考查了基本不等式的應(yīng)用,屬于中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | -$\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | 2 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com