| A. | $\frac{2}{5}$ | B. | $\frac{3}{5}$ | C. | $\frac{3}{7}$ | D. | $\frac{5}{7}$ |
分析 設(shè)橢$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$(a>b>0),運(yùn)用橢圓的定義,可得|NF2|=2a-|NF1|=2a-3,|MF2|+|MF1|=2a,即有2c+4=2a,取MF1的中點(diǎn)K,連接KF2,則KF2⊥MN,由勾股定理可得a+c=12,解得a,c,運(yùn)用離心率公式計(jì)算即可得到.
解答
解:設(shè)橢圓$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$(a>b>0),
F1(-c,0),F(xiàn)2(c,0),
|MF2|=|F1F2|=2c,
由橢圓的定義可得|NF2|=2a-|NF1|=2a-3,
|MF2|+|MF1|=2a,即有2c+4=2a,
即a-c=2,①
取MF1的中點(diǎn)K,連接KF2,則KF2⊥MN,
由勾股定理可得|MF2|2-|MK|2=|NF2|2-|NK|2,
即為4c2-4=(2a-3)2-25,化簡即為a+c=12,②
由①②解得a=7,c=5,
則離心率e=$\frac{c}{a}$=$\frac{5}{7}$.
故選:D.
點(diǎn)評 本題考查橢圓的定義、方程和性質(zhì),主要考查橢圓的定義的運(yùn)用和離心率的求法,考查運(yùn)算能力,屬于中檔題.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 720 | B. | 270 | C. | 390 | D. | 300 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com