分析 (1)利用等差數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式即可得出;
(2)由log2an-log2bn=n+1+log2n,利用對(duì)數(shù)的運(yùn)算性質(zhì)可得:$\frac{{a}_{n}}{_{n}}$=n•2n+1,再利用(1)可得:bn=$\frac{1}{{2}^{n}}$,利用等比數(shù)列的前n項(xiàng)和公式即可得出.
解答 解:(1)∵An=$\frac{1}{4}$(an2+2an),
∴當(dāng)n≥2時(shí),${A}_{n-1}=\frac{1}{4}({a}_{n-1}^{2}+2{a}_{n-1})$,
∴an=$\frac{1}{4}$(an2+2an)-$\frac{1}{4}({a}_{n-1}^{2}+2{a}_{n-1})$,
化為(an+an-1)(an-an-1-2)=0,
∵an>0,∴an-an-1=2,
∴數(shù)列{an}是等差數(shù)列,首項(xiàng)為2,公差為2,
∴An=2n+$\frac{n(n-1)}{2}×2$=n2+n.
(2)∵log2an-log2bn=n+1+log2n,
∴$\frac{{a}_{n}}{_{n}}$=n•2n+1,
由(1)可得:an=2+2(n-1)=2n,
∴$\frac{2n}{_{n}}=n•{2}^{n+1}$,
∴bn=$\frac{1}{{2}^{n}}$,
∴數(shù)列{bn}是等比數(shù)列,首項(xiàng)為$\frac{1}{2}$,公比為$\frac{1}{2}$.
其前n項(xiàng)之和為Bn=$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$=1-$\frac{1}{{2}^{n}}$.
點(diǎn)評(píng) 本題考查了等差數(shù)列與等比數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式、對(duì)數(shù)的運(yùn)算性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
| x | -4 | -1 | -$\frac{1}{2}$ | 0 |
| y | -8 | $\frac{3}{2}$ | 2$\sqrt{2}$ | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com