欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

10.已知在△ABC中,a,b,c分別為角A,B,C所對(duì)的邊,且cosC=$\frac{2}{3}$,$\overrightarrow{AC}$•$\overrightarrow{CB}$=-2,且a+b=$\sqrt{26}$,則c邊長(zhǎng)為( 。
A.$\sqrt{5}$B.4C.$\sqrt{13}$D.$\sqrt{17}$

分析 利用平面向量的數(shù)量積運(yùn)算法則化簡(jiǎn)$\overrightarrow{AC}$•$\overrightarrow{CB}$=-2,將cosC的值代入求出ab的值,利用余弦定理得到c2=a2+b2-2abcosC,利用完全平方公式變形后,將a+b,ab及cosC的值代入,開方即可求出c的值

解答 解:∵cosC=$\frac{2}{3}$,$\overrightarrow{AC}$•$\overrightarrow{CB}$=-2,
∴$\overrightarrow{AC}$•$\overrightarrow{CB}$=abcos(π-C)=-abcosC=-$\frac{2}{3}$ab=-2,
解得:ab=3,又a+b=$\sqrt{26}$,
∴由余弦定理得:c2=a2+b2-2abcosC=(a+b)2-2ab-2abcosC=26-6-4=16,
則c=4;
故選B.

點(diǎn)評(píng) 此題考查了余弦定理,平面向量的數(shù)量積運(yùn)算法則,以及完全平方公式的運(yùn)用,熟練掌握公式及定理是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.執(zhí)行如圖所示的程序框圖,若輸入x=2,則輸出y的值為( 。
A.23B.11C.5D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=ax-lnx-1(a∈R).
(Ⅰ)討論函數(shù)f(x)在定義域內(nèi)的極值點(diǎn)的個(gè)數(shù);
(Ⅱ)若函數(shù)f(x)在x=1處取得極值,對(duì)任意的x∈(0,+∞),f(x)≥bx-2恒成立,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,三棱柱ABC-A1B1C1中,側(cè)面BCC1B1是矩形,截面A1BC是等邊三角形.
(Ⅰ)求證:AB=AC;
(Ⅱ)若AB⊥AC,三棱柱的高為1,求C1點(diǎn)到截面A1BC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若非零向量$\overrightarrow a,\overrightarrow b$滿足($\overrightarrow{a}$-4$\overrightarrow$)⊥$\overline{a}$,($\overrightarrow$-$\overrightarrow{a}$)⊥$\overrightarrow$,則$\overrightarrow a$與$\overrightarrow b$的夾角是(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知f(x)=min{2$\sqrt{x}$,|x-2|},其中min{a,b}=$\left\{\begin{array}{l}{aa≤b}\\{ba>b}\end{array}\right.$,若動(dòng)直線y=m與函數(shù)y=f(x)的圖象有三個(gè)不同的交點(diǎn),它們的橫坐標(biāo)分別為x1,x2,x3
(1)m的取值范圍是$({0,2\sqrt{3}-2})$;
(2)當(dāng)x1x2x3取最大值時(shí),m=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在等腰Rt△ABC中,∠BAC=90°,AB=AC=2,D、E分別是邊AB、BC的中點(diǎn),將△BDE沿DE翻折,得到四棱錐B-ADEC,且F為棱BC中點(diǎn),$BA=\sqrt{2}$.
(Ⅰ)求證:EF⊥平面BAC;
(Ⅱ)在線段AD上是否存在一點(diǎn)Q,使得AF∥平面BEQ?若存在,求二面角Q-BE-A的余弦值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知集合A={x|-1<x<1},B={x|x2-3x≤0},則A∩B等于( 。
A.[-1,0]B.(-1,3]C.[0,1)D.{-1,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知函數(shù)f(x)=$\sqrt{{2^{{x^2}-2ax+a}}-1}$.當(dāng)a=1時(shí)不等式f(x)≥1的解集是(-∞,0]∪[2,+∞);若函數(shù)f(x)的定義域?yàn)镽,則實(shí)數(shù)a的取值范圍是[0,1].

查看答案和解析>>

同步練習(xí)冊(cè)答案