分析 連接AC,根據(jù)勾股定理求出AC,根據(jù)勾股定理的逆定理求出∠ACB=90°,求出區(qū)域的面積,即可求出答案.
解答 解:連結(jié)AC,
如圖所示:
在Rt△ACD中,∠ADC=90°,AD=4米,CD=3米,
由勾股定理得:AC=$\sqrt{{8}^{2}+{6}^{2}}$=10(米),
∵AC2+BC2=102+242=676,AB2=262=676,
∴AC2+BC2=AB2,
∴∠ACB=90°,
∴該區(qū)域面積S=S△ACB-S△ADC=$\frac{1}{2}$×10×24-$\frac{1}{2}$×6×8=96(平方米),
96×300=28800(元).
∴學(xué)校需要投入28800元資金買草皮.
點(diǎn)評(píng) 本題考查了勾股定理,三角形面積,勾股定理的逆定理的應(yīng)用;解此題的關(guān)鍵是求出區(qū)域的面積.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 判別式的值為16 | B. | 方程有一根是1 | C. | a不等于0 | D. | a不等于2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com