| A. | $\frac{25}{2}$cm2 | B. | 10cm2 | C. | 5$\sqrt{6}$cm2 | D. | 以上都有可能 |
分析 因為等腰三角形腰的位置不明確,所以分(1)腰長在矩形相鄰的兩邊上,(2)一腰在矩形的寬上,(3)一腰在矩形的長上,三種情況討論.(1)△AEF為等腰直角三角形,直接利用面積公式求解即可;(2)先利用勾股定理求出AE邊上的高BF,再代入面積公式求解即可;(3)先求出AE邊上的高DF,再代入面積公式求解即可.
解答 解:分三種情況計算:
(1)當(dāng)AE=AF=5厘米時,![]()
∴S△AEF=$\frac{1}{2}$AE•AF=$\frac{1}{2}$×5×5=12.5厘米2,
(2)當(dāng)AE=EF=5厘米時,如圖![]()
BF=$\sqrt{E{F}^{2}-B{E}^{\;}}$=2$\sqrt{6}$厘米,
∴S△AEF=$\frac{1}{2}$•AE•BF=$\frac{1}{2}$×5×2$\sqrt{(\;\;\;\;)}$=5$\sqrt{6}$厘米2,
(3)當(dāng)AE=EF=5厘米時,如圖![]()
DF=$\sqrt{E{F}^{2}-D{E}^{2}}$=4厘米,
∴S△AEF=$\frac{1}{2}$AE•DF=$\frac{1}{2}$×5×4=10厘米2,
故選D.
點評 本題主要考查矩形的角是直角的性質(zhì)和勾股定理的運用,要根據(jù)三角形的腰長的不確定分情況討論是解題的關(guān)鍵也是此題的難點.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
| 銷售單價x(元) | … | 330 | 335 | 340 | 345 | … |
| 銷售量y(件) | … | 240 | 230 | 220 | 210 | … |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com