分析 (1)先在Rt△BCG中根據(jù)等腰直角三角形的性質(zhì)求出∠GBC的度數(shù),再根據(jù)∠ABC=∠GBC+∠ABG即可得出∠ABC的度數(shù);在Rt△ACH中利用勾股定理即可求出AC的長;
(2)根據(jù)相似三角形的判定定理,夾角相等,對應(yīng)邊成比例即可證明△ABC與△DEF相似.
解答
解:(1)∵△BCG是等腰直角三角形,
∴∠GBC=45°,
∵∠ABG=90°,
∴∠ABC=∠GBC+∠ABG=90°+45°=135°;
∵在Rt△AHC中,AH=4,CH=2,
∴AC=$\sqrt{A{H}^{2}+C{H}^{2}}$=$\sqrt{{4}^{2}+{2}^{2}}$=2$\sqrt{5}$.
故答案為:135,$2\sqrt{5}$;
(2)△ABC∽△DEF.
證明:∵在4×4的正方形方格中,
∠ABC=∠DEF=135°,
∴∠ABC=∠DEF.
∵AB=2,BC=2$\sqrt{2}$,F(xiàn)E=2,DE=$\sqrt{2}$,
∴$\frac{AB}{DE}$=$\frac{2}{\sqrt{2}}$=$\sqrt{2}$,$\frac{BC}{EF}$=$\frac{2\sqrt{2}}{2}$=$\sqrt{2}$.
∴$\frac{AB}{DE}$=$\frac{BC}{EF}$,
∴△ABC∽△DEF.
點評 此題考查的是相似三角形的判定,解答此題的關(guān)鍵是認真觀察圖形,得出兩個三角形角和角,邊和邊的關(guān)系.
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 點O到頂點A的距離大于到頂點B的距離 | |
| B. | 點O到頂點A的距離等于到頂點B的距離 | |
| C. | 點O到邊AB的距離大于到邊BC的距離 | |
| D. | 點O到邊AB的距離等于到邊BC的距離 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com