分析 先由對(duì)頂角相等可得:∠2=∠3,然后由∠1+∠2=180°,根據(jù)等量代換可得:∠1+∠3=180°,然后根據(jù)同旁內(nèi)角互補(bǔ)兩直線平行可得:EF∥AB,然后根據(jù)兩直線平行同位角相等可得:∠B=∠CFE,然后由∠B=∠DEF,根據(jù)等量代換可得:∠CFE=∠DEF,然后根據(jù)內(nèi)錯(cuò)角相等兩直線平行即可得到:DE∥BC.
解答 證明:∵∠1+∠2=180°(已知),
而∠2=∠3(對(duì)頂角相等),
∴∠1+∠3=180°
∴EF∥AB(同旁內(nèi)角互補(bǔ)兩直線平行)
∴∠B=∠CFE(兩直線平行同位角相等)
∵∠B=∠DEF(已知)
∴∠DEF=∠CFE(等量代換)
∴DE∥BC(內(nèi)錯(cuò)角相等兩直線平行).
故答案為:對(duì)頂角相等;EF;AB;同旁內(nèi)角互補(bǔ)兩直線平行;∠CFE;兩直線平行同位角相等;∠CFE;內(nèi)錯(cuò)角相等兩直線平行.
點(diǎn)評(píng) 此題考查了平行線的性質(zhì)與判定,熟記同位角相等?兩直線平行,內(nèi)錯(cuò)角相等?兩直線平行,同旁內(nèi)角互補(bǔ)?兩直線平行是解題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{1}{2}$ | B. | 0 | C. | $\frac{3}{2}$ | D. | 2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com