分析 設(shè)OB=AB=a,則OC=a+1,得出點A和點E的坐標,把A、E的坐標代入函數(shù)解析式,即可求出答案.
解答 解:設(shè)OB=AB=a,則OC=a+1,
即A點的坐標為(a,a),E點的坐標為(a+1,1),
把A、E的坐標代入函數(shù)解析式得:$\left\{\begin{array}{l}{a=\frac{k}{a}}\\{1=\frac{k}{a+1}}\end{array}\right.$
所以a=$\frac{1±\sqrt{5}}{2}$,
∵a為正數(shù),
∴a=$\frac{1+\sqrt{5}}{2}$,
∴k=$\frac{1+\sqrt{5}}{2}$+1=$\frac{3+\sqrt{5}}{2}$,
故答案為:$\frac{3+\sqrt{5}}{2}$.
點評 本題考查了反比例函數(shù)圖象上點的坐標特征,用待定系數(shù)法求函數(shù)的解析式的應(yīng)用,能得出關(guān)于x和k的方程組是解此題的關(guān)鍵,數(shù)形結(jié)合思想的應(yīng)用.
科目: 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\left\{\begin{array}{l}α+β=180\\ α=β-30\end{array}\right.$ | B. | $\left\{\begin{array}{l}α+β=180\\ α=β+30\end{array}\right.$ | C. | $\left\{\begin{array}{l}α+β=90\\ α=β+30\end{array}\right.$ | D. | $\left\{\begin{array}{l}α+β=90\\ α=β-30\end{array}\right.$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 50° | B. | 60° | C. | 70° | D. | 80° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com