欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

19.【問(wèn)題探究】
(1)如圖1,銳角△ABC中分別以AB、AC為邊向外作等腰△ABE和等腰△ACD,使AE=AB,AD=AC,∠BAE=∠CAD,連接BD,CE,試猜想BD與CE的大小關(guān)系,并說(shuō)明理由.
【深入探究】
(2)如圖2,四邊形ABCD中,AB=7cm,BC=3cm,∠ABC=∠ACD=∠ADC=45°,求BD的長(zhǎng).
(3)如圖3,在(2)的條件下,當(dāng)△ACD在線段AC的左側(cè)時(shí),求BD的長(zhǎng).

分析 (1)首先根據(jù)等式的性質(zhì)證明∠EAC=∠BAD,則根據(jù)SAS即可證明△EAC≌△BAD,根據(jù)全等三角形的性質(zhì)即可證明;
(2)在△ABC的外部,以A為直角頂點(diǎn)作等腰直角△BAE,使∠BAE=90°,AE=AB,連接EA、EB、EC,證明△EAC≌△BAD,證明BD=CE,然后在直角三角形BCE中利用勾股定理即可求解;
(3)在線段AC的右側(cè)過(guò)點(diǎn)A作AE⊥AB于點(diǎn)A,交BC的延長(zhǎng)線于點(diǎn)E,證明△EAC≌△BAD,證明BD=CE,即可求解.

解答 解:(1)BD=CE.
理由是:∵∠BAE=∠CAD,
∴∠BAE+∠BAC=∠CAD+∠BAC,即∠EAC=∠BAD,
在△EAC和△BAD中,
$\left\{\begin{array}{l}{AE=AB}\\{∠EAC=∠BAD}\\{AC=AD}\end{array}\right.$,
∴△EAC≌△BAD,
∴BD=CE;
(2)如圖2,在△ABC的外部,以A為直角頂點(diǎn)作等腰直角△BAE,使∠BAE=90°,AE=AB,連接EA、EB、EC.
∵∠ACD=∠ADC=45°,
∴AC=AD,∠CAD=90°,
∴∠BAE+∠BAC=∠CAD+∠BAC,即∠EAC=∠BAD,
在△EAC和△BAD中,
$\left\{\begin{array}{l}{AE=AB}\\{∠EAC=∠BAD}\\{AC=AD}\end{array}\right.$,
∴△EAC≌△BAD,
∴BD=CE.
∵AE=AB=7,
∴BE=$\sqrt{{7}^{2}+{7}^{2}}$=7$\sqrt{2}$,∠ABE=∠AEB=45°,
又∵∠ABC=45°,
∴∠ABC+∠ABE=45°+45°=90°,
∴EC=$\sqrt{B{E}^{2}+B{C}^{2}}$=$\sqrt{(7\sqrt{2})^{2}+{3}^{2}}$=$\sqrt{107}$,
∴BD=CE=$\sqrt{107}$.
(3)如圖3,在線段AC的右側(cè)過(guò)點(diǎn)A作AE⊥AB于點(diǎn)A,交BC的延長(zhǎng)線于點(diǎn)E,連接BE.
∵AE⊥AB,
∴∠BAE=90°,
又∵∠ABC=45°,
∴∠E=∠ABC=45°,
∴AE=AB=7,BE=$\sqrt{{7}^{2}+{7}^{2}}$=7$\sqrt{2}$,
又∵∠ACD=∠ADC=45°,
∴∠BAE=∠DAC=90°,
∴∠BAE-∠BAC=∠DAC-∠BAC,即∠EAC=∠BAD,
在△EAC和△BAD中,
$\left\{\begin{array}{l}{AE=AB}\\{∠EAC=∠BAD}\\{AC=AD}\end{array}\right.$,
∴△EAC≌△BAD,
∴BD=CE,
∵BC=3,
∴BD=CE=(7$\sqrt{2}$-3)cm.

點(diǎn)評(píng) 本題考查了全等三角形的判定與性質(zhì),正確理解三個(gè)題目之間的聯(lián)系,構(gòu)造(1)中的全等三角形是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

9.解不等式組$\left\{\begin{array}{l}{\frac{x-3}{2}+3≥x}\\{1-2(x-1)<4-x}\end{array}\right.$,并寫(xiě)出不等式組的整數(shù)解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.一個(gè)平行四邊形的兩條對(duì)角線的長(zhǎng)分別為8和10,則這個(gè)平行四邊形邊長(zhǎng)不可能是( 。
A.2B.5C.8D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,DE∥AC,且∠1=∠2,試判斷∠ADC與∠FGC有怎樣的大小關(guān)系?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

14.一個(gè)水池有兩個(gè)進(jìn)水管,單獨(dú)開(kāi)甲管注滿水池需2小時(shí),單獨(dú)開(kāi)乙管注滿水池需3小時(shí),兩個(gè)同時(shí)開(kāi)注滿水池的時(shí)間是$\frac{6}{5}$ 小時(shí).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知關(guān)于x的不等式3x+mx>-5的解集如圖所示,則m的值為-$\frac{1}{2}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.下列各式是最簡(jiǎn)二次根式的是( 。
A.$\sqrt{5{x}^{2}}$B.$\sqrt{0.9}$C.$\sqrt{\frac{3}{7}}$D.$\sqrt{{a}^{2}-3}$

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

8.某零件制造廠有工人20名,已知每名工人每天可制造甲種零件6個(gè)或乙種零件5個(gè),且每制造一個(gè)甲種零件的成本為400元,可獲利150元,每制造一個(gè)乙種零件的成本為500元,可獲利260元.在這20名工人中,車(chē)間每天安排x名工人制造甲種零件,其余工人制造乙種零件.
(1)寫(xiě)出次廠家每天獲利y(元)與x(元)之間的函數(shù)關(guān)系式;
(2)若該廠家每天最多能投入的成本為49000元,那么該廠家每天最多能獲利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

9.因式分解:3x2-5xy-2y2+11x+6y-4.

查看答案和解析>>

同步練習(xí)冊(cè)答案