分析 ①正確.由等邊三角形的性質(zhì)得出AB=DB,∠ABD=∠CBE=60°,BE=BC,得出∠ABE=∠DBC,由SAS即可證出△ABE≌△DBC;
②錯(cuò)誤.由△ABE≌△DBC,得出∠BAE=∠BDC,根據(jù)三角形外角的性質(zhì)得出∠DMA=60°;
③正確.由ASA證明△ABP≌△DBQ,得出對(duì)應(yīng)邊相等BP=BQ,即可得出△BPQ為等邊三角形;
④正確.證明P、B、Q、M四點(diǎn)共圓,由圓周角定理得出∠BMP=∠BMQ,即MB平分∠AMC.
解答 解:∵△ABD、△BCE為等邊三角形,
∴AB=DB,∠ABD=∠CBE=60°,BE=BC,
∴∠ABE=∠DBC,∠PBQ=60°,![]()
在△ABE和△DBC中,
$\left\{\begin{array}{l}{AB=DB}\\{∠ABE=∠DBC}\\{BE=BC}\end{array}\right.$,
∴△ABE≌△DBC(SAS),故①正確;
∵△ABE≌△DBC,
∴∠BAE=∠BDC,
∵∠BDC+∠BCD=180°-60°-60°=60°,
∴∠DMA=∠BAE+∠BCD=∠BDC+∠BCD=60°,②錯(cuò)誤;
在△ABP和△DBQ中,
$\left\{\begin{array}{l}{∠BAP=∠BDQ}\\{AB=DB}\\{∠ABP=∠DBQ=90°}\end{array}\right.$,
∴△ABP≌△DBQ(ASA),
∴BP=BQ,
∴△BPQ為等邊三角形,故③正確;
∵∠DMA=60°,
∴∠AMC=120°,
∴∠AMC+∠PBQ=180°,
∴P、B、Q、M四點(diǎn)共圓,
∵BP=BQ,
∴$\widehat{BP}$=$\widehat{BQ}$
∴∠BMP=∠BMQ,
即MB平分∠AMC,故④正確;
綜上所述:正確的結(jié)論有①③④;
故答案為①③④.
點(diǎn)評(píng) 本題考查了等邊三角形的性質(zhì)與判定、全等三角形的判定與性質(zhì)、四點(diǎn)共圓、圓周角定理;熟練掌握等邊三角形的性質(zhì),證明三角形全等是解決問(wèn)題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com