分析 (1)先證明四邊形ADCE是平行四邊形,再由直角三角形斜邊上的中線性質(zhì)得出AD=CD,即可得出結(jié)論;
(2)由中線的性質(zhì)得出△ABC的面積=2△ACD的面積,由菱形的性質(zhì)得出菱形ADCE的面積=2△ACD的面積,得出菱形ADCE的面積=△ABC的面積,由三角函數(shù)得出AB=3a,即可求出答案.
解答 (1)證明:∵AE∥BC,AE=CD,
∴四邊形ADCE是平行四邊形.
∵∠BAC=90°,D是BC邊的中點(diǎn),
∴AD=BD=CD.
∴平行四邊形ADCE是菱形.
(2)解:∵D是BC邊的中點(diǎn),
∴△ABC的面積=2△ACD的面積,
∵四邊形ADCE是菱形,
∴菱形ADCE的面積=2△ACD的面積,
∴菱形ADCE的面積=△ABC的面積,
∵∠BAC=90°,AC=a,tan∠ABC=$\frac{AC}{AB}$=$\frac{1}{3}$,
∴AB=3AC=3a,
∴菱形ADCE的面積=$\frac{1}{2}$AB•AC=$\frac{3}{2}$a2.
點(diǎn)評(píng) 本題考查了菱形的判定與性質(zhì)、平行四邊形的判定、直角三角形斜邊上的中線性質(zhì)、三角函數(shù)的運(yùn)用;熟練掌握菱形的判定與性質(zhì)是解決問題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
| 序號(hào) | 1 | 2 | 3 | 4 |
| 身高 | 155 | 160 | 165 | 172 |
| 序號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| 身高 | 148 | 149 | 150 | 152 | 152 | 160 | 160 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 175 |
| 序號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| 身高 | 145 | 160 | 150 | 152 | 160 | 154 | 160 | 166 | 167 | 168 | 160 | 169 | 173 | 174 | 175 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | ③→②→①→④ | B. | ③→④→①→② | C. | ①→②→④→③ | D. | ①→④→③→② |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com