分析 (1)根據(jù)平方差公式進行計算即可;
(2)根據(jù)規(guī)律可得$\sqrt{n}$+$\sqrt{n-1}$=$\sqrt{n}$-$\sqrt{n-1}$,再計算即可;
(3)由規(guī)律可得$\frac{1}{\sqrt{2n+1}+\sqrt{2n-1}}$=$\frac{1}{2}$($\sqrt{2n+1}$-$\sqrt{2n-1}$)再計算即可.
解答 解:(1)$\frac{1}{\sqrt{6}+\sqrt{5}}$=$\frac{\sqrt{6}-\sqrt{5}}{(\sqrt{6})^{2}-(\sqrt{5})^{2}}$=$\sqrt{6}$-$\sqrt{5}$;
(2)原式=$\sqrt{2}$-1+$\sqrt{3}$-$\sqrt{2}$+$\sqrt{4}$-$\sqrt{3}$+…+$\sqrt{100}$-$\sqrt{99}$,
=$\sqrt{100}$-1,
=10-1,
=9;
(3)原式=$\frac{\sqrt{3}-1}{2}$+$\frac{\sqrt{5}-\sqrt{3}}{2}$+$\frac{\sqrt{7}-\sqrt{5}}{2}$+…+$\frac{\sqrt{2017}-\sqrt{2015}}{2}$,
=$\frac{1}{2}$($\sqrt{3}$-1+$\sqrt{5}$-$\sqrt{3}$+$\sqrt{7}$-$\sqrt{5}$+…+$\sqrt{2017}$-$\sqrt{2015}$),
=$\frac{1}{2}$(-1+$\sqrt{2017}$)
=$\frac{\sqrt{2017}-1}{2}$.
點評 本題考查了分母有理化,掌握有理化因式的求法是解題的關(guān)鍵.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com