欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

12.如圖,點(diǎn)E是△ABC的內(nèi)心,AE的延長線交BC于點(diǎn)F,交△ABC的外接圓⊙O于點(diǎn)D,連接BD,過點(diǎn)D作直線DM,使∠BDM=∠DAC.
(1)求證:直線DM是⊙O的切線;
(2)求證:DE2=DF•DA.

分析 (1)根據(jù)垂徑定理的推論即可得到OD⊥BC,再根據(jù)∠BDM=∠DBC,即可判定BC∥DM,進(jìn)而得到OD⊥DM,據(jù)此可得直線DM是⊙O的切線;
(2)根據(jù)三角形內(nèi)心的定義以及圓周角定理,得到∠BED=∠EBD,即可得出DB=DE,再判定△DBF∽△DAB,即可得到DB2=DF•DA,據(jù)此可得DE2=DF•DA.

解答 解:(1)如圖所示,連接OD,
∵點(diǎn)E是△ABC的內(nèi)心,
∴∠BAD=∠CAD,
∴$\widehat{BD}$=$\widehat{CD}$,
∴OD⊥BC,
又∵∠BDM=∠DAC,∠DAC=∠DBC,
∴∠BDM=∠DBC,
∴BC∥DM,
∴OD⊥DM,
∴直線DM是⊙O的切線;

(2)如圖所示,連接BE,
∵點(diǎn)E是△ABC的內(nèi)心,
∴∠BAE=∠CAE=∠CBD,∠ABE=∠CBE,
∴∠BAE+∠ABE=∠CBD+∠CBE,
即∠BED=∠EBD,
∴DB=DE,
∵∠DBF=∠DAB,∠BDF=∠ADB,
∴△DBF∽△DAB,
∴$\frac{DF}{DB}$=$\frac{DB}{DA}$,即DB2=DF•DA,
∴DE2=DF•DA.

點(diǎn)評 本題主要考查了三角形的內(nèi)心與外心,圓周角定理以及垂徑定理的綜合應(yīng)用,解題時注意:平分弦所對一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧;三角形的內(nèi)心到三角形三邊的距離相等;三角形的內(nèi)心與三角形頂點(diǎn)的連線平分這個內(nèi)角.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:選擇題

2.如圖,大三角形與小三角形是位似圖形.若小三角形一個頂點(diǎn)的坐標(biāo)為(m,n),則大三角形中與之對應(yīng)的頂點(diǎn)坐標(biāo)為( 。
A.(-2m,-2n)B.(2m,2n)C.(-2n,-2m)D.(2n,2m)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

3.如圖,在Rt△ABC中,以直角邊AC為直徑作⊙O與斜邊AB交于點(diǎn)D,點(diǎn)E在BC邊上,BE=CE.
(1)求證:DE是⊙O的切線;
(2)延長ED與CA的延長線交于點(diǎn)F,若tan∠F=$\frac{3}{4}$,求sin∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

20.如圖,在△ABC中,AC⊥BC,∠ABC=30°,點(diǎn)D是CB延長線上的一點(diǎn),且BD=BA,則tan∠DAC的值為(  )
A.2+$\sqrt{3}$B.2$\sqrt{3}$C.3+$\sqrt{3}$D.3$\sqrt{3}$

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

7.如圖,一個幾何體的三視圖分別是兩個矩形、一個扇形,則這個幾何體表面積的大小為12+15π.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

17.已知關(guān)于x的一元二次方程ax2-2x-1=0有兩個不相等的實(shí)數(shù)根,則a的取值范圍是a>-1且a≠0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

4.如圖,拋物線y=-$\frac{1}{2}$x2+bx+c與x軸交于點(diǎn)A和點(diǎn)B,與y軸交于點(diǎn)C,點(diǎn)B坐標(biāo)為(6,0),點(diǎn)C坐標(biāo)為(0,6),點(diǎn)D是拋物線的頂點(diǎn),過點(diǎn)D作x軸的垂線,垂足為E,連接BD.

(1)求拋物線的解析式及點(diǎn)D的坐標(biāo);
(2)點(diǎn)F是拋物線上的動點(diǎn),當(dāng)∠FBA=∠BDE時,求點(diǎn)F的坐標(biāo);
(3)若點(diǎn)M是拋物線上的動點(diǎn),過點(diǎn)M作MN∥x軸與拋物線交于點(diǎn)N,點(diǎn)P在x軸上,點(diǎn)Q在坐標(biāo)平面內(nèi),以線段MN為對角線作正方形MPNQ,請寫出點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

1.解分式方程:$\frac{2}{x+1}$=$\frac{1}{x-1}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

20.已知x=$\frac{1}{\sqrt{3}-\sqrt{2}}$,求$\sqrt{(x-\frac{1}{x})^{2}+4}$-$\sqrt{(x+\frac{1}{x})^{2}-4}$的值.

查看答案和解析>>

同步練習(xí)冊答案