分析 (1)可設拋物線的解析式為y=ax2+bx+c,然后只需運用待定系數(shù)法就可解決問題;
(2)當-$\frac{1}{3}$<t<2時,點N在x軸的上方,則NP等于點N的縱坐標,只需求出AB,就可得到S與t的函數(shù)關系式;
(3)根據(jù)相似三角形的性質(zhì)可得PN=2PO.由于PO=|t|,根據(jù)0<t<2,由PN=2PO得到關于t的方程,解這個方程,就可解決問題.
解答 解:(1)設拋物線的解析式為y=ax2+bx+c,由題意可得:$\left\{\begin{array}{l}{\frac{1}{9}a-\frac{1}{3}b+c=0}\\{4a+2b+c=0}\\{c=1}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{a=-\frac{3}{2}}\\{b=\frac{5}{2}}\\{c=1}\end{array}\right.$.
∴拋物線的函數(shù)關系式為y=-$\frac{3}{2}$x2+$\frac{5}{2}$x+1;
(2)當-$\frac{1}{3}$<t<2時,yN>0,
∴NP=|yN|=yN=-$\frac{3}{2}$t2+$\frac{5}{2}$t+1,
∴S=$\frac{1}{2}$AB•PN
=$\frac{1}{2}$×(2+$\frac{1}{3}$)×(-$\frac{3}{2}$t2+$\frac{5}{2}$t+1)
=$\frac{7}{6}$(-$\frac{3}{2}$t2+$\frac{5}{2}$t+1)
=-$\frac{7}{4}$t2+$\frac{35}{12}$t+$\frac{7}{6}$;
(3)∵△OPN∽△COB,
∴$\frac{PO}{OC}$=$\frac{PN}{OB}$,
∴$\frac{PO}{1}$=$\frac{PN}{2}$,
∴PN=2PO.
當0<t<2時,PN=|yN|=yN=-$\frac{3}{2}$t2+$\frac{5}{2}$t+1,PO=|t|=t,
∴-$\frac{3}{2}$t2+$\frac{5}{2}$t+1=2t,
整理得:3t2-t-2=0,
解得:t3=-$\frac{2}{3}$,t4=1.
∵-$\frac{2}{3}$<0,0<1<2,
∴t=1,此時點N的坐標為(1,2).
故點N的坐標為(1,2).
點評 本題主要考查了二次函數(shù)綜合題,解題的關鍵是熟悉待定系數(shù)法求二次函數(shù)的解析式、相似三角形的性質(zhì)、解一元二次方程等知識,需要注意的是:用點的坐標表示相關線段的長度時,應先用坐標的絕對值表示線段的長度,然后根據(jù)坐標的正負去絕對值;解方程后要檢驗,不符合條件的解要舍去.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com