分析 由AE為角平分線,得到一對(duì)角相等,再由ABCD為平行四邊形,得到AD與BE平行,利用兩直線平行內(nèi)錯(cuò)角相等得到一對(duì)角相等,等量代換及等角對(duì)等邊得到AD=DF,由F為DC中點(diǎn),AB=CD,求出AD與DF的長,得出三角形ADF為等腰三角形,根據(jù)三線合一得到G為AF中點(diǎn),再由三角形ADF與三角形ECF全等,得出AF=EF,求出AG,由勾股定理求出AD,即可得出AB的長.
解答 解:∵AE為∠DAB的平分線,
∴∠DAE=∠BAE,
∵DC∥AB
∴∠BAE=∠DFA,
∴∠DAE=∠DFA,
∴AD=FD,
又∵F為DC的中點(diǎn),
∴DF=CF,
∴AD=DF=$\frac{1}{2}$DC=$\frac{1}{2}$AB,
∵DG⊥AE,
∴AG=FG,
∵平行四邊形ABCD中,
∴AD∥BC,
∴∠DAF=∠E,∠ADF=∠ECF,
在△ADF和△ECF中,$\left\{\begin{array}{l}{∠DAF=∠E}&{\;}\\{∠ADE=∠ECF}&{\;}\\{DF=CF}&{\;}\end{array}\right.$,
∴△ADF≌△ECF(AAS),
∴AF=EF=2$\sqrt{3}$,
∴AG=$\sqrt{3}$,
∴AD=$\sqrt{A{G}^{2}+D{G}^{2}}$=2,
∴AB=2AD=4;
故答案為:4.
點(diǎn)評(píng) 此題考查了平行四邊形的性質(zhì),全等三角形的判定與性質(zhì),勾股定理,等腰三角形的判定與性質(zhì),熟練掌握平行四邊形的判定與性質(zhì)是解本題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{2\sqrt{3}}{3}$π | B. | $\frac{π}{3}$-$\frac{\sqrt{3}}{4}$ | C. | $\frac{2}{3}$π-$\frac{\sqrt{3}}{2}$ | D. | π-$\sqrt{3}$ |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com