分析 過F作ME⊥AD于E,可得出四邊形ABME為矩形,利用矩形的性質(zhì)得到AE=BF,AB=EM,分兩種情況考慮:(i)當(dāng)G在AB上,B′落在AE上時,如圖1所示,由折疊的性質(zhì)得到B′M=BM,BG=B′G,在直角三角形EMB′中,利用勾股定理求出B′E的長,由AE-B′E求出AB′的長,設(shè)AG=x,由AB-AG表示出BG,即為B′G,在直角三角形AB′G中,利用勾股定理列出關(guān)于x的方程,求出方程的解得到x的值,確定出AG的長,進(jìn)而求出BG的長,在直角三角形GBM中,利用勾股定理即可求出折痕MG的長;(ii)當(dāng)G在AE上,B′落在ED上,如圖2所示,同理求出B′E的長,設(shè)A′G=AG=y,由AE+B′E-AG表示出GB′,在直角三角形A′B′G中,利用勾股定理列出關(guān)于y的方程,求出方程的解得到y(tǒng)的值,求出AG的長,由AE-AG求出GE的長,在直角三角形GEM中,利用勾股定理即可求出折痕MG的長,綜上,得到所有滿足題意的折痕MG的長.
解答 解:如圖1所示,過M作ME⊥AD于E,G在AB上,B′落在AE上,可得四邊形ABME為矩形,![]()
∴EM=AB=16,AE=BM,
又∵BC=40,M為BC的中點(diǎn),
∴由折疊可得:B′M=BM=$\frac{1}{2}$BC=20,
在Rt△EFB′中,根據(jù)勾股定理得:B′E=$\sqrt{B′{M}^{2}-E{M}^{2}}$=12,
∴AB′=AE+B′E=20+12=32,
設(shè)AG=x,則有GB′=GB=16-x,
在Rt△AGB′中,根據(jù)勾股定理得:GB′2=AG2+A′B′2,
即(16-x)2=x2+82,
解得:x=6,
∴GB=16-6=10
在Rt△GBF中,根據(jù)勾股定理得:GM=$\sqrt{G{B}^{2}-B{M}^{2}}$=10$\sqrt{5}$;
(ii)如圖2所示,過F作FE⊥AD于E,G在AE上,B′落在ED上,可得四邊形ABME為矩形,![]()
∴EM=AB=16,AE=BM,
又BC=40,M為BC的中點(diǎn),
∴由折疊可得:B′M=BM=$\frac{1}{2}$BC=20,
在Rt△EMB′中,根據(jù)勾股定理得:B′E=$\sqrt{B′{M}^{2}-E{M}^{2}}$=12,
∴AB′=AE+B′E=20+12=32,
設(shè)AG=A′G=y,則GB′=AB′-AG=AE+EB′-AG=32-y,A′B′=AB=16,
在Rt△A′B′G中,根據(jù)勾股定理得:A′G2+A′B′2=GB′2,
即y2+162=(32-y)2,
解得:y=12,
∴AG=12,
∴GE=AE-AG=20-12=8,
在Rt△GEM中,根據(jù)勾股定理得:GM=$\sqrt{G{E}^{2}-E{M}^{2}}$=8$\sqrt{5}$,
綜上,折痕MG=10$\sqrt{5}$或8$\sqrt{5}$.
故答案為:10$\sqrt{5}$cm或8$\sqrt{5}$cm.
點(diǎn)評 此題考查了翻折變換-折疊問題,涉及的知識有:矩形的判定與性質(zhì),勾股定理,利用了方程、轉(zhuǎn)化及分類討論的思想,是一道綜合性較強(qiáng)的試題.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | (4,1) | B. | (5,1) | C. | (6,1) | D. | (7,1) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | -4 | B. | -2 | C. | 0 | D. | 4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com