分析 首先過點E作EM∥AB,交AF于M.由在正方形ABCD中,E為BC的中點,易得EM是梯形ABCF的中位線,又由AF=BC+CF,可得EM=AM=$\frac{1}{2}$AF,繼而證得∠1=∠2=∠3,證得結(jié)論.
解答
證明:過點E作EM∥AB,交AF于M.
∵在正方形ABCD中,E為BC的中點,
∴AM=MF,∠1=∠3,AB=BC,
∴EM=$\frac{1}{2}$(AB+CF)=$\frac{1}{2}$(BC+CF),
∵AF=BC+CF,
∴EM=AM=$\frac{1}{2}$AF,
∴∠2=∠3,
∴∠1=∠2,
∴∠BAF=2∠BAE.
點評 此題考查了正方形的性質(zhì)以及梯形中位線的性質(zhì).注意準(zhǔn)確理解定義是解此題的關(guān)鍵.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\sqrt{25}$=±5 | B. | 4$\sqrt{3}$-$\sqrt{27}$=1 | C. | $\sqrt{18}$÷$\sqrt{2}$=9 | D. | $\sqrt{24}$×$\sqrt{\frac{3}{2}}$=6 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com