欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

4.愛好思考的小茜在探究兩條直線的位置關(guān)系查閱資料時,發(fā)現(xiàn)了“中垂三角形”,即兩條中線互相垂直的三角形稱為“中垂三角形”.如圖(1)、圖(2)、圖(3)中,AM、BN是△ABC的中線,AM⊥BN于點(diǎn)P,像△ABC這樣的三角形均為“中垂三角形”.設(shè)BC=a,AC=b,AB=c.
【特例探究】
(1)如圖1,當(dāng)tan∠PAB=1,c=4$\sqrt{2}$時,a=4$\sqrt{5}$,b=4$\sqrt{5}$;
如圖2,當(dāng)∠PAB=30°,c=2時,a=$\sqrt{7}$,b=$\sqrt{13}$;
【歸納證明】
(2)請你觀察(1)中的計(jì)算結(jié)果,猜想a2、b2、c2三者之間的關(guān)系,用等式表示出來,并利用圖3證明你的結(jié)論.
【拓展證明】
(3)如圖4,?ABCD中,E、F分別是AD、BC的三等分點(diǎn),且AD=3AE,BC=3BF,連接AF、BE、CE,且BE⊥CE于E,AF與BE相交點(diǎn)G,AD=3$\sqrt{5}$,AB=3,求AF的長.

分析 (1)①首先證明△APB,△PMN都是等腰直角三角形,求出PA、PB、PN、PM,再利用勾股定理即可解決問題.
②連接MN,在RT△PAB,RT△PMN中,利用30°性質(zhì)求出PA、PB、PN、PM,再利用勾股定理即可解決問題.
(2)結(jié)論a2+b2=5c2.設(shè)MP=x,NP=y,則AP=2x,BP=2y,利用勾股定理分別求出a2、b2、c2即可解決問題.
(3)取AB中點(diǎn)H,連接FH并且延長交DA的延長線于P點(diǎn),首先證明△ABF是中垂三角形,利用(2)中結(jié)論列出方程即可解決問題.

解答 (1)解:如圖1中,∵CN=AN,CM=BM,
∴MN∥AB,MN=$\frac{1}{2}$AB=2$\sqrt{2}$,
∵tan∠PAB=1,
∴∠PAB=∠PBA=∠PNM=∠PMN=45°,
∴PN=PM=2,PB=PA=4,
∴AN=BM=$\sqrt{{4}^{2}+{2}^{2}}$=2$\sqrt{5}$.
∴b=AC=2AN=4$\sqrt{5}$,a=BC=4$\sqrt{5}$.
故答案為4$\sqrt{5}$,4$\sqrt{5}$,
如圖2中,連接NM,
,∵CN=AN,CM=BM,
∴MN∥AB,MN=$\frac{1}{2}$AB=1,
∵∠PAB=30°,
∴PB=1,PA=$\sqrt{3}$,
在RT△MNP中,∵∠NMP=∠PAB=30°,
∴PN=$\frac{1}{2}$,PM=$\frac{\sqrt{3}}{2}$,
∴AN=$\frac{\sqrt{13}}{2}$,BM=$\frac{\sqrt{7}}{2}$,
∴a=BC=2BM=$\sqrt{7}$,b=AC=2AN=$\sqrt{13}$,
故答案分別為$\sqrt{7}$,$\sqrt{13}$.
(2)結(jié)論a2+b2=5c2
證明:如圖3中,連接MN.
∵AM、BN是中線,
∴MN∥AB,MN=$\frac{1}{2}$AB,
∴△MPN∽△APB,
∴$\frac{MP}{AP}$=$\frac{PN}{PB}$=$\frac{1}{2}$,
設(shè)MP=x,NP=y,則AP=2x,BP=2y,
∴a2=BC2=4BM2=4(MP2+BP2)=4x2+16y2
b2=AC2=4AN2=4(PN2+AP2)=4y2+16x2,
c2=AB2=AP2+BP2=4x2+4y2
∴a2+b2=20x2+20y2=5(4x2+4y2)=5c2

(3)解:如圖4中,在△AGE和△FGB中,
$\left\{\begin{array}{l}{∠AGE=∠FGB}\\{∠AEG=∠FBG}\\{AE=BF}\end{array}\right.$,
∴△AGE≌△FGB,
∴BG=FG,取AB中點(diǎn)H,連接FH并且延長交DA的延長線于P點(diǎn),
同理可證△APH≌△BFH,
∴AP=BF,PE=CF=2BF,
即PE∥CF,PE=CF,
∴四邊形CEPF是平行四邊形,
∴FP∥CE,
∵BE⊥CE,
∴FP⊥BE,即FH⊥BG,
∴△ABF是中垂三角形,
由(2)可知AB2+AF2=5BF2,
∵AB=3,BF=$\frac{1}{3}$AD=$\sqrt{5}$,
∴9+AF2=5×($\sqrt{5}$)2,
∴AF=4.

點(diǎn)評 本題考查四邊形綜合題、三角形中位線定理、平行四邊形的判定和性質(zhì)、勾股定理等知識,解題的關(guān)鍵是理解題意,學(xué)會添加常用輔助線構(gòu)造全等三角形,學(xué)會利用新的結(jié)論解決問題,屬于中考壓軸題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:選擇題

14.某校九年級(1)班全體學(xué)生2016年初中畢業(yè)體育考試的成績統(tǒng)計(jì)如表:
成績(分)35394244454850
人數(shù)(人)2566876
根據(jù)表中的信息判斷,下列結(jié)論中錯誤的是( 。
A.該班一共有40名同學(xué)
B.該班學(xué)生這次考試成績的眾數(shù)是45分
C.該班學(xué)生這次考試成績的中位數(shù)是45分
D.該班學(xué)生這次考試成績的平均數(shù)是45分

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

15.已知n邊形的內(nèi)角和θ=(n-2)×180°.
(1)甲同學(xué)說,θ能取360°;而乙同學(xué)說,θ也能取630°.甲、乙的說法對嗎?若對,求出邊數(shù)n.若不對,說明理由;
(2)若n邊形變?yōu)椋╪+x)邊形,發(fā)現(xiàn)內(nèi)角和增加了360°,用列方程的方法確定x.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

12.如圖,將矩形紙片ABCD(AD>AB)折疊,使點(diǎn)C剛好落在線段AD上,且折痕分別與邊BC,AD相交,設(shè)折疊后點(diǎn)C,D的對應(yīng)點(diǎn)分別為點(diǎn)G,H,折痕分別與邊BC,AD相交于點(diǎn)E,F(xiàn).
(1)判斷四邊形CEGF的形狀,并證明你的結(jié)論;
(2)若AB=3,BC=9,求線段CE的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

19.計(jì)算(1-$\frac{1}{x+1}$)(x+1)的結(jié)果是x.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

9.為了解茂名某水果批發(fā)市場荔枝的銷售情況,某部門對該市場的三種荔枝品種A、B、C在6月上半月的銷售進(jìn)行調(diào)查統(tǒng)計(jì),繪制成如下兩個統(tǒng)計(jì)圖(均不完整).請你結(jié)合圖中的信息,解答下列問題:
(1)該市場6月上半月共銷售這三種荔枝多少噸?
(2)該市場某商場計(jì)劃六月下半月進(jìn)貨A、B、C三種荔枝共500千克,根據(jù)該市場6月上半月的銷售情況,求該商場應(yīng)購進(jìn)C品種荔枝多少千克比較合理?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

16.在等邊△ABC中,

(1)如圖1,P,Q是BC邊上的兩點(diǎn),AP=AQ,∠BAP=20°,求∠AQB的度數(shù);
(2)點(diǎn)P,Q是BC邊上的兩個動點(diǎn)(不與點(diǎn)B,C重合),點(diǎn)P在點(diǎn)Q的左側(cè),且AP=AQ,點(diǎn)Q關(guān)于直線AC的對稱點(diǎn)為M,連接AM,PM.
①依題意將圖2補(bǔ)全;
②小茹通過觀察、實(shí)驗(yàn)提出猜想:在點(diǎn)P,Q運(yùn)動的過程中,始終有PA=PM,小茹把這個猜想與同學(xué)們進(jìn)行交流,通過討論,形成了證明該猜想的幾種想法:
想法1:要證明PA=PM,只需證△APM是等邊三角形;
想法2:在BA上取一點(diǎn)N,使得BN=BP,要證明PA=PM,只需證△ANP≌△PCM;
想法3:將線段BP繞點(diǎn)B順時針旋轉(zhuǎn)60°,得到線段BK,要證PA=PM,只需證PA=CK,PM=CK…
請你參考上面的想法,幫助小茹證明PA=PM(一種方法即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

13.(1)計(jì)算:($\frac{1}{2}$)-1-$\sqrt{27}$-(π-2016)0+9tan30°;
(2)解分式方程:$\frac{x-3}{x-2}$+1=$\frac{3}{x-2}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

14.某興趣小組借助無人飛機(jī)航拍校園.如圖,無人飛機(jī)從A處水平飛行至B處需8秒,在地面C處同一方向上分別測得A處的仰角為75°,B處的仰角為30°.已知無人飛機(jī)的飛行速度為4米/秒,求這架無人飛機(jī)的飛行高度.(結(jié)果保留根號)

查看答案和解析>>

同步練習(xí)冊答案