分析 (1)根據(jù)等腰三角形的性質(zhì)得到∠APQ=∠AQP,由鄰補(bǔ)角的定義得到∠APB=∠AQC,根據(jù)三角形外角的性質(zhì)即可得到結(jié)論;
(2)如圖2根據(jù)等腰三角形的性質(zhì)得到∠APQ=∠AQP,由鄰補(bǔ)角的定義得到∠APB=∠AQC,由點(diǎn)Q關(guān)于直線AC的對稱點(diǎn)為M,得到AQ=AM,∠OAC=∠MAC,等量代換得到∠MAC=∠BAP,推出△APM是等邊三角形,根據(jù)等邊三角形的性質(zhì)即可得到結(jié)論.
解答 解:(1)∵AP=AQ,![]()
∴∠APQ=∠AQP,
∴∠APB=∠AQC,
∵△ABC是等邊三角形,
∴∠B=∠C=60°,
∴∠BAP=∠CAQ=20°,
∴∠AQB=∠APQ=∠BAP+∠B=80°;
(2)如圖2,∵AP=AQ,
∴∠APQ=∠AQP,
∴∠APB=∠AQC,
∵△ABC是等邊三角形,
∴∠B=∠C=60°,
∴∠BAP=∠CAQ,(將線段BP繞點(diǎn)B順時針旋轉(zhuǎn)60°,得到線段BK,要證PA=PM,只需證PA=CK,PM=CK…
請你參考上面的想法,幫助小茹證明PA=PM)
∵點(diǎn)Q關(guān)于直線AC的對稱點(diǎn)為M,
∴AQ=AM,∠QAC=∠MAC,
∴∠MAC=∠BAP,
∴∠BAP+∠PAC=∠MAC+∠CAP=60°,
∴∠PAM=60°,
∵AP=AQ,
∴AP=AM,
∴△APM是等邊三角形,
∴AP=PM.證明△ABP≌△ACM≌△BCK
點(diǎn)評 本題考查了等邊三角形的性質(zhì)和判定,等腰三角形的性質(zhì),三角形的外角的性質(zhì),軸對稱的性質(zhì),熟練掌握等邊三角形的判定和性質(zhì)是解題的關(guān)鍵.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
| 活動形式 | 征文 | 講故事 | 演講 | 網(wǎng)上競答 | 其他 |
| 人數(shù) | 60 | 30 | 39 | a | b |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
| 組別 | 步數(shù)分組 | 頻數(shù) |
| A | 5500≤x<6500 | 2 |
| B | 6500≤x<7500 | 10 |
| C | 7500≤x<8500 | m |
| D | 8500≤x<9500 | 3 |
| E | 9500≤x<10500 | n |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com