分析 (1)根據(jù)角平分線的定義可得∠OBC=$\frac{1}{2}$∠ABC,∠OCB=$\frac{1}{2}$∠ACB,然后表示出∠OBC+∠OCB,再根據(jù)三角形的內(nèi)角和等于180°列式整理即可;
(2)由三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和可證2∠1+2∠2=2∠A+∠ABC+∠ACB=∠A+180°,再根據(jù)三角形內(nèi)角和定理可證2∠BOC=180°-∠A,即∠BOC=90°-$\frac{1}{2}$∠A;
(3)由三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和可證2∠1+2∠2=2∠A+∠ABC+∠ACB=∠A+180°,再根據(jù)三角形內(nèi)角和定理可證2∠BOC=180°-∠A,即∠BOC=90°-$\frac{1}{2}$∠A.
解答 解:(1)∠BOC=90°+$\frac{1}{2}$∠A.
∵∠ABC與∠ACB的平分線相交于點O,
∴∠OBC=$\frac{1}{2}$∠ABC,∠OCB=$\frac{1}{2}$∠ACB,
∴∠OBC+∠OCB=$\frac{1}{2}$(∠ABC+∠ACB),
在△OBC中,∠BOC=180°-(∠OBC+∠OCB)
=180°-$\frac{1}{2}$(∠ABC+∠ACB)
=180°-$\frac{1}{2}$(180°-∠A)
=90°+$\frac{1}{2}$∠A,
故答案為:∠BOC=90°+$\frac{1}{2}$∠A;
(2)∠BOC與∠A的關(guān)系是∠BOC=90°-$\frac{1}{2}$∠A.
故答案為:∠BOC=90°-$\frac{1}{2}$∠A.
(3)證明:如圖,![]()
∵BO、CO分別是△ABC的外角∠DBC、∠ECB的角平分線,
∴∠DBC=2∠1=∠ACB+∠A,
∠ECB=2∠2=∠ABC+∠A,
∴2∠1+2∠2=2∠A+∠ABC+∠ACB=∠A+180°,
又∵∠1+∠2+∠BOC=180°,
∴2∠BOC=180°-∠A,
∴∠BOC=90°-$\frac{1}{2}$∠A.
點評 本題考查三角形外角的性質(zhì)及三角形的內(nèi)角和定理,解答的關(guān)鍵是溝通外角和內(nèi)角的關(guān)系.
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 100 | B. | 66 | C. | 36 | D. | 32 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 2.5cm | B. | 3cm | C. | 4cm | D. | 5cm |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com