分析 (1)連接DF,根據(jù)直角三角形斜邊中線的性質(zhì)得出AD=CD,得出∠DAC=∠C,根據(jù)圓周角定理得出∠DFE=∠DAC,即可得出∠DFE=∠C,根據(jù)平行線的性質(zhì)和判定即可證得FD∥EC,得出四邊形EFDC是平行四邊形,即可證得結(jié)論;
(2)連接OF,DE,根據(jù)直角三角形斜邊中線的性質(zhì)和切線的性質(zhì)得出∠DAC=∠C=∠EDC,根據(jù)圓周角定理得出∠ADE=90°,根據(jù)三角形內(nèi)角和定理求得∠C=30°,根據(jù)平行線的性質(zhì)和等腰三角形的性質(zhì)得出∠EOF=120°,解直角三角形求得半徑的長,然后根據(jù)弧長公式即可求得.
解答
(1)證明:如圖1,連接DF,
∵AD是Rt△ABC斜邊BC上的中線,
∴AD=DC,
∴∠DAC=∠C,
∵∠DFE=∠DAC,
∴∠DFE=∠C,
∵EF∥BC,
∴∠CEF+∠C=180°,
∴∠DFE+∠CEF=180°,
∴FD∥EC,
∴四邊形EFDC是平行四邊形,
∴EF=DC,
∴AD=EF.
(2)
解:如圖2,連接OF,DE,
∵AD是Rt△ABC斜邊BC上的中線,
∴AD=DC,
∴∠DAC=∠C,
∵⊙O與BC邊相切,
∴∠EDC=∠DAC,
∴∠EDC=∠C,
∵AE是直徑,
∴∠ADE=90°,
∵∠ADC+∠DAC+∠C=180°,
∴90°+3∠C=180°,
∴∠C=30°,
∵EF∥BC,
∴∠OEF=∠C=30°,
∴OE=$\frac{\frac{1}{2}EF}{cos30°}$=$\frac{1}{\frac{\sqrt{3}}{2}}$=$\frac{2\sqrt{3}}{3}$,
∵OE=OF,
∴∠OFE=∠OEF=30°,
∴∠EOF=120°,
∴$\widehat{EF}$的長=$\frac{120π×\frac{2\sqrt{3}}{3}}{180}$=$\frac{4\sqrt{3}}{9}$π.
點(diǎn)評 本題考查了切線的性質(zhì),直角三角形斜邊中線的性質(zhì),平行四邊形的判定和性質(zhì)以及三角形內(nèi)角和定理,熟練掌握性質(zhì)定理是解題的關(guān)鍵.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com